ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-06-13
    Description: The large amount of computational effort required for a full fatigue assessment of offshore wind turbine support structures under operational conditions can make these analyses prohibitive. Especially for applications like design optimization, where the analysis would have to be repeated for each iteration of the process. To combat this issue, we present a simple procedure for reducing the number of load cases required for an accurate fatigue assessment. After training on one full fatigue analysis of a base design, the method can be applied to establish a deterministic, reduced sampling set to be used for a family of related designs. The method is based on sorting the load cases by their severity, measured as the product of fatigue damage and probability of occurrence, and then calculating the relative error resulting from using only the most severe load cases to estimate the total fatigue damage. By assuming this error to be approximately constant, one can then estimate the fatigue damage of other designs using just these load cases. The method yields a maximum error of about 6% when using around 30 load cases (out of 3647) and, for most cases, errors of less than 1–2% can be expected for sample sizes in the range 15–60. One of the main points in favor of the method is its simplicity when compared to more advanced sampling-based approaches. The method as is can be used without further modifications and is especially useful for design optimization and preliminary design. We end the paper by noting a few possibilities for future work that extend or improve upon the method.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-04
    Description: The need for cost effective support structure designs for offshore wind turbines has led to continued interest in the development of design optimization methods. So far, almost no studies have considered the effect of uncertainty, and hence probabilistic constraints, on the support structure design optimization problem. In this work, we present a general methodology that implements recent developments in gradient-based design optimization, in particular the use of analytical gradients, within the context of reliability-based design optimization methods. By an assumed factorization of the uncertain response into a design-independent, probabilistic part and a design-dependent, but completely deterministic part, it is possible to computationally decouple the reliability analysis from the design optimization. Furthermore, this decoupling makes no further assumption about the functional nature of the stochastic response, meaning that high fidelity surrogate modeling through Gaussian process regression of the probabilistic part can be performed while using analytical gradient-based methods for the design optimization. We apply this methodology to several different cases based around a uniform cantilever beam and the OC3 Monopile and different loading and constraints scenarios. The results demonstrate the viability of the approach in terms of obtaining reliable, optimal support structure designs and furthermore show that in practice only a limited amount of additional computational effort is required compared to deterministic design optimization. While there are some limitations in the applied cases, and some further refinement might be necessary for applications to high fidelity design scenarios, the demonstrated capabilities of the proposed methodology show that efficient reliability-based optimization for offshore wind turbine support structures is feasible.
    Electronic ISSN: 2366-7621
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-30
    Description: The large amount of computational effort required for a full fatigue assessment of offshore wind turbine support structures under operational conditions can make these analyses prohibitive, especially for applications like design optimization, for which the analysis would have to be repeated for each iteration of the process. To combat this issue, we present a simple procedure for reducing the number of load cases required for an accurate fatigue assessment. After training on one full fatigue analysis of a base design, the method can be applied to establish a deterministic, reduced sampling set to be used for a family of related designs. The method is based on sorting the load cases by their severity, measured as the product of fatigue damage and probability of occurrence, and then calculating the relative error resulting from using only the most severe load cases to estimate the total fatigue damage. By assuming this error to be approximately constant, one can then estimate the fatigue damage of other designs using just these load cases. The method yields a maximum error of about 6 % when using around 30 load cases (out of 3647) and, for most cases, errors of less than 1 %–2 % can be expected for sample sizes in the range 15–60. One of the main points in favor of the method is its simplicity when compared to more advanced sampling-based approaches. Though there are possibilities for further improvements, the presented version of the method can be used without further modifications and is especially useful for design optimization and preliminary design. We end the paper by noting some possibilities for future work that extend or improve upon the method.
    Print ISSN: 2366-7443
    Electronic ISSN: 2366-7451
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-29
    Description: The need for cost-effective support structure designs for offshore wind turbines has led to continued interest in the development of design optimization methods. So far, almost no studies have considered the effect of uncertainty, and hence probabilistic constraints, on the support structure design optimization problem. In this work, we present a general methodology that implements recent developments in gradient-based design optimization, in particular the use of analytical gradients, within the context of reliability-based design optimization methods. Gradient-based optimization is typically more efficient and has more well-defined convergence properties than gradient-free methods, making this the preferred paradigm for reliability-based optimization where possible. By an assumed factorization of the uncertain response into a design-independent, probabilistic part and a design-dependent but completely deterministic part, it is possible to computationally decouple the reliability analysis from the design optimization. Furthermore, this decoupling makes no further assumption about the functional nature of the stochastic response, meaning that high-fidelity surrogate modeling through Gaussian process regression of the probabilistic part can be performed while using analytical gradient-based methods for the design optimization. We apply this methodology to several different cases based around a uniform cantilever beam and the OC3 Monopile and different loading and constraint scenarios. The results demonstrate the viability of the approach in terms of obtaining reliable, optimal support structure designs and furthermore show that in practice only a limited amount of additional computational effort is required compared to deterministic design optimization. While there are some limitations in the applied cases, and some further refinement might be necessary for applications to high-fidelity design scenarios, the demonstrated capabilities of the proposed methodology show that efficient reliability-based optimization for offshore wind turbine support structures is feasible.
    Print ISSN: 2366-7443
    Electronic ISSN: 2366-7451
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Copernicus on behalf of European Academy of Wind Energy.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-01
    Electronic ISSN: 1876-6102
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...