ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 222 (1969), S. 79-79 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Fig. 1. Diffusion couple assembly. Fig. 2. Diffusion front characteristics in a and c-axis rutile crystals. Shaded area is diffused region. The couples were then sectioned parallel to the direction of diffusion and polished for electron microprobe analysis. This showed that the diffusion front ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  Lactobacillus helveticus CNRZ32 possesses an Xaa-prolyldipeptidyl aminopeptidase (PepX), which releases amino-terminal dipeptides from peptides containing proline residues in the penultimate position. The PepX gene, designated pepX, from Lb. helveticus CNRZ32 was sequenced. Analysis of the sequence identified a putative 2379-bp pepX open-reading frame, which encodes a polypeptide of 793 amino acid residues with a deduced molecular mass of 88111 Da. The gene shows significant sequence identity with sequenced pepX genes from lactic acid bacteria. The product of the gene contains a motif that is almost identical with the active-site motif of the serine-dependent PepX from lactococci. The introduction of pepX into Lactococcus lactis LM0230 on either pGK12 (a low-copy-number plasmid vector) or pIL253 (a high-copy-number plasmid vector) did not result in a significant increase in PepX activity, while the introduction of pepX into CNRZ32 on pGK12 resulted in a four-fold increase in PepX activity. Southern hybridization experiments revealed that the pepX gene from CNRZ32 is well conserved in lactobacilli, pediococci and streptococci. The physiological role of PepX during growth in lactobacillus MRS (a rich medium containing protein hydrolysates along with other ingredients) and milk was examined by comparing growth of CNRZ32 and a CNRZ32 PepX-negative derivative. No difference in growth rate or acid production was observed between CNRZ32 and its PepX-negative derivative in MRS. However, the CNRZ32 PepX-negative derivative grew in milk at a reduced specific growth rate when compared to wild-type CNRZ32. Introduction of the cloned PepX determinant into the CNRZ32 PepX-negative derivative resulted in a construct with a specific growth rate similar to that of wild-type CNRZ32.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Lactobacillus helveticus CNRZ32 possesses and Xaa-prolyldipeptidyl aminopeptidase (PepX), which releases amino-terminal dipeptides from peptides containing proline residues in the penultimate position. The PepX gene, designatedpepX, fromLb. helveticus CNRZ32 was sequenced. Analysis of the sequence identified a putative 2379-bppepX open-reading frame, which encodes a polypeptide of 793 amino acid residues with a deduced molecular mass of 88 111 Da, The gene shows significant sequence identity with sequencedpepX genes from lactic acid bacteria. The product of the gene contains a motif that is almost identical with the active-site motif of the serine-dependent PepX from lactococci. The introduction ofpepX intoLactococcus lactis LM0230 on either pGK12 (a low-copy-number plasmid vector) did not result in a significant increase in PepX activity, while the introduction ofpepX into CNRZ32 on pGK12 resulted in a four-fold increase in PepX activity. Southern hybridization experiments revealed that thepepX gene from CNRZ32 is well conserved in lactobacilli, pediococci and streptococci. The physiological role of PepX during growth in lactobacillus MRS (a rich medium containing protein hydrolysates along with other ingredients) and milk was examined by comparing growth of CNRZ32 and a CNRZ32 PepX-negative derivative in MRS. However, the CRNZ32 PepX-negative derivative grew in milk at a reduced specific growth rate when compared to wild-type CNRZ32. Introduction of the cloned PepX determinant into the CNRZ32 PepX-negative derivative resulted in a construct with a specific growth rate similar to that of wild-type CNRZ32.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  A dipeptidase gene (pepD) from an industrial Lactobacillus helveticus strain was isolated by colony hybridization. An open reading frame (ORF) of 1422 base pairs (bp) with a coding capacity for a 53.5-kDa protein (PepD) was identified. The ORF was preceded by a typical prokaryotic promoter region, and an inverted repeat structure with ΔG of −51.0 kJ ⋅ mol-1 was found downstream of the coding region. The deduced amino acid sequence of the 53.5-kDa protein revealed no marked homologies when compared to the data bases of EMBL and SWISS-PROT. The 5′end of the 1.6-kb pepD transcript was determined both by a conventional primer extension method and using an automated sequencer. pepD was found to be maximally expressed at late exponential growth. The pepD gene was cloned into an expression vector to over-produce PepD in Escherichia coli JM105. Purification of PepD to homogeneity was achieved using three chromatographic steps. PepD was able to hydrolyze a number of dipeptides with the exception of those containing a proline residue. Optimal PepD activity was observed at pH 6.0 and 55 °C. The enzyme was inhibited by p-hydroxymercuribenzoate and reactivated by dithiothreitol whereas ethylenediaminetetraacetate had no inhibitory effect on PepD. The enzymatic properties of PepD suggest that it represents a novel dipeptidase type among lactic acid bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 39 (1993), S. 204-210 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Lactic acid bacteria express a complex proteolytic enzyme system that is capable of hydrolyzing casein to amino acids. We have begun to examine the number and specificity of exopeptidases from Lactobacillus helveticus CNRZ 32. A genomic library of L. helveticus CNRZ 32 DNA fragments from a Sau3A partial digestion was constructed in Escherichia coli DH5α utilizing pJDC9. This library was screened for the presence of aminopeptidase, X-prolyl dipeptidyl aminopeptidase (X-PDAP), and dipeptidase activities by two methods. The first screening identified an aminopeptidase II (APII) and X-PDAP. The X-PDAP was determined to be present on four independent DNA inserts ranging in size from 3.5 to 7.7 kilobase pairs (kbp). EcoRI/EcoRV digests of these plasmids suggested that all inserts had 1.0 and 1.8 kbp fragments in common. The gene for APII was determined to be present on three independent DNA inserts ranging in size from 8.2 to 11.3 kbp. EcoRI digestion of these plasmids indicated that 1.2 and 1.8 kbp fragments were in common. The second screening identified an additional aminopeptidase (API), a di/tripeptidase (DTP) with prolinase activity, a broad-specificity dipeptidase (DPI), and a narrow-specificity dipeptidase (DPII). The insert size of clones expressing API, DTP, DPI, DPII were 4.8, 9.5, 5.8, and 6.3 kbp, respectively. Histochemical staining of native polyacrylamide gels from recombinant E. coli cultures demonstrated that the cloned peptidase co-migrated with native L. helveticus CNRZ 32 enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 41 (1994), S. 432-439 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A plasmid, designated pSUW100, encoding the D(-)lactate dehydrogenase [D(-)-LDH; NAD+ oxidoreductase, EC 1.1.1.28] fromLactobacillus helveticus CNRZ32 was identified from a genomic library by complementation ofEscherichia coli FMJ39. The D(-)LDH gene was localized by Tn5 mutagenesis and subcloning to a 1.4-kb region of pSUW100. A 2-kbDraI fragment of pSUW100 encoding D(-)LDH activity was subcloned and its nucleotide sequence determined. Analysis of this sequence identified a putative 1,014-bp D(-) LDH open reading frame that encodes a polypeptide of 337 amino acid residues with a deduced molecular mass of 38 kDa. The distribution of homology to the CNRZ32 D(-)LDH gene in several lactic acid bacteria was determined by Southern hybridization using an internal fragment of the D(-)LDH gene as a probe. Hybridization was detected in leuconostocs and pediococci but not in lactococci orLactobacillus casei. An integration plasmid was constructed from pSA3 and a 0.60-kb internal fragment of the D(-)LDH gene. This plasmid was used to construct a D(-)LDH-negative derivative ofL. helveticus CNRZ 32 by gene disruption; this derivative was determined as producing only L(+)lactic acid. No significant difference in growth or total lactic acid production was observed between CNRZ32 and its D(-)LDH mutant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 41 (1994), S. 432-439 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A plasmid, designated pSUW100, encoding the D(-)lactate dehydrogenase [D(-)-LDH; NAD+ oxidoreductase, EC 1.1.1.28] fromLactobacillus helveticus CNRZ32 was identified from a genomic library by complementation ofEscherichia coli FMJ39. The D(-)LDH gene was localized by Tn5 mutagenesis and subcloning to a 1.4-kb region of pSUW100. A 2-kbDraI fragment of pSUW100 encoding D(-)LDH activity was subcloned and its nucleotide sequence determined. Analysis of this sequence identified a putative 1,014-bp D(-) LDH open reading frame that encodes a polypeptide of 337 amino acid residues with a deduced molecular mass of 38 kDa. The distribution of homology to the CNRZ32 D(-)LDH gene in several lactic acid bacteria was determined by Southern hybridization using an internal fragment of the D(-)LDH gene as a probe. Hybridization was detected in leuconostocs and pediococci but not in lactococci orLactobacillus casei. An integration plasmid was constructed from pSA3 and a 0.60-kb internal fragment of the D(-)LDH gene. This plasmid was used to construct a D(-)LDH-negative derivative ofL. helveticus CNRZ 32 by gene disruption; this derivative was determined as producing only L(+)lactic acid. No significant difference in growth or total lactic acid production was observed between CNRZ32 and its D(-)LDH mutant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 41 (1994), S. 432-439 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A plasmid, designated pSUW100, encoding the D(-)lactate dehydrogenase [D(-)-LDH; NAD+ oxidoreductase, EC 1.1.1.28] from Lactobacillus helveticus CNRZ32 was identified from a genomic library by complementation of Escherichia coli FMJ39. The D(-)LDH gene was localized by Tn5 mutagenesis and subcloning to a 1.4-kb region of pSUW100. A 2-kb DraI fragment of pSUW100 encoding D(-)LDH activity was subcloned and its nucleotide sequence determined. Analysis of this sequence identified a putative 1,014-bp D(-)LDH open reading frame that encodes a polypeptide of 337 amino acid residues with a deduced molecular mass of 38 kDa. The distribution of homology to the CNRZ32 D(-)LDH gene in several lactic acid bacteria was determined by Southern hybridization using an internal fragment of the D(-)LDH gene as a probe. Hybridization was detected in leuconostocs and pediococci but not in lactococci or Lactobacillus casei. An integration plasmid was constructed from pSA3 and a 0.60-kb internal fragment of the D(-)LDH gene. This plasmid was used to construct a D(-)LDH-negative derivative of L. helveticus CNRZ 32 by gene disruption; this derivative was determined as producing only L(+)lactic acid. No significant difference in growth or total lactic acid production was observed between CNRZ32 and its D(-)LDH mutant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 12 (1993), S. 35-41 
    ISSN: 1476-5535
    Keywords: Lactobacillus helveticus ; Lactate dehydrogenase ; Purification ; Characterization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary d-(−)-Lactate dehydrogenase (LDH) was purified to homogeneity from a cell-free extract ofLactobacillus helveticus CNRZ 32. The native enzyme was determined to have a molecular weight of 152 000 and consisted of four identical subunits of 38 000. This enzyme was NAD dependent fructose 1,6-diphosphate (FDP) and ATP independent. It was most active on pyruvate followed by β-hydroxypyruvate as substrates. TheK m values for pyruvate andd-(−)-lactate were 0.64 and 68.42 mM respectively, indicating that the enzyme has a higher affinity for pyruvate. The enzyme activity was completely inhibited byp-chloromercuribenzoate (1 mM) and partially by iodoacetate, suggesting the involvement of the sulfhydryl group (-SH) in catalysis. Optima for activity by the purified enzyme were pH 4.0 and 50–60°C. Limited inhibition ofd-(−)-LDH was observed with several divalent cations. Additionally, HgCl2 was observed to strongly inhibit enzyme activity. The purified enzyme was not affected by dithiothreitol or any of the metal chelating agents examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-06-25
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...