ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.
    Keywords: Computer Programming and Software; Instrumentation and Photography
    Type: SPIE Paper 9953-10 , NF1676L-23634 , SPIE Optics + Photonics 2016; Aug 28, 2016 - Sep 01, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The Rapid Response Radiation Survey (R3S) experiment, designed as a quick turnaround mission to make radiation measurements in Low Earth Orbit (LEO), will fly as a hosted payload in partnership with NovaWurks using their Hyper-integrated Satlet (HISat) architecture. The need for the mission arises as the Nowcast of Atmospheric Ionization Radiation for Aviation Safety (NAIRAS) model moves from a research effort into an operational radiation assessment tool. Currently, airline professionals are the second largest demographic of radiation workers and to date their radiation exposure is undocumented in the USA. The NAIRAS model seeks to fill this information gap. The data collected by R3S, in addition to the complementary data from a NASA Langley Research Center (LaRC) atmospheric balloon mission entitled Radiation Dosimetry Experiment (RaD-X), will validate exposure prediction capabilities of NAIRAS. The R3S mission collects total dose and radiation spectrum measurements using a Teledyne Dosimeter and a Liulin-6SA2 LED spectrometer. These two radiation sensors provide a cross correlated radiometric measurement in combination with the Honeywell HMR2300 Smart Digital Magnetometer. The magnetometer assesses the Earth's magnetic field in the LEO environment and allows radiation dose to be mapped as a function of the Earth's magnetic shielding. R3S is also unique in that the radiation sensors will be exposed on the outer surface of the spacecraft, possibly making this the first measurements of the LEO radiation environment with bare sensors. Viability of R3S as an extremely fast turnaround mission is due, in part, to the nature of the robust, well-defined interfaces of the conformal satellite HiSat Architecture. The HiSat architecture, which was developed with the support of the Defense Advanced Research Projects Agency's (DARPA's) Phoenix Program, enabled the R3S system to advance from the first concept to delivery of preliminary design review (PDR) level documents in 29 calendar days. The architecture allows for interface complexities between the specific devices and the satellite bus to be resolved in a standardized interface control document (ICD). The ICD provided a readymade framework to interface to the modular satellite bus. This modularity allowed for approximately 90% of the R3S system to be designed and fabricated in two months without constraint of the hosting satellite's development cycle. This paper discusses the development of the R3S experiment as made possible by use of the HiSat architecture. The system design and operational modes of the experiment are described, as well as the experiment interfaces to the HiSat satellite via the user defined adapter (UDA) provided by NovaWurks. This paper outlines the steps taken by the project to execute the R3S mission in the 4 months of design, build, and test. Additionally portrayed is the ground work done at LaRC to posture the organization for a fast response and the process by which the opportunity was identified as aligning with key strategic goals. Finally, a description of the engineering process is provided, including the use of facilitated rapid/concurrent engineering sessions, the associated documentation, and the review process employed.
    Keywords: Space Radiation; Spacecraft Design, Testing and Performance
    Type: Paper No. SSC-15-III-8 , NF1676L-20752 , Annual AIAA/USU Conference on Small Satellites; Aug 08, 2015 - Aug 13, 2015; Ogden, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...