ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge Univ. Press
    Call number: IASS 12.0015
    Type of Medium: Monograph available for loan
    Pages: xviii, 335 S. , graph. Darst.
    ISBN: 9780521190909
    Series Statement: Communication, society and politics
    Branch Library: RIFS Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-24
    Description: Despite a large macronutrient reservoir, the Southern Ocean has low levels of chlorophyll, primarily due to low iron availability. Exceptions to this situation are island systems where natural terrestrial iron inputs allow the development of large blooms. Particulate organic carbon (POC) and particulate (labile and refractory) iron analyses were performed on large (〉53 μm) particles collected at the base of the mixed layer within such a system (the Crozet Islands) and in adjacent high-nutrient, low-chlorophyll (HNLC) waters. Biogenic iron was obtained by removal of estimated lithogenic Fe from the total Fe present. We combine these data with 234Th measurements to determine downward particulate Fe fluxes. Fluxes of Fe ranged from 4 to 301 nmol m−2 d−1 (labile), not detectable to 50 μmol m−2 d−1 (biogenic), and from 3 to 145 μmol m−2 d−1 (total) and, on average, were approximately four times larger below the highly productive, naturally iron-fertilized region than below the adjacent HNLC area. Downward labile iron fluxes are close to the sum of dissolved terrestrial, atmospheric, and upwelled iron calculated from the Planquette et al. (2007), model. Refractory iron fluxes are ∼2 orders of magnitude larger, and these can only have come from particles advected from the plateau itself. The “biogenic Fe,” is a substantial fraction (0–76, mean 23%) of the total particulate Fe to the north of the islands. The origin of this Fe pool must be dominantly biological conversion from the lithogenic fraction, as other supply terms including aeolian, deep mixing, and lateral advection of dissolved Fe are inadequate to account for the magnitude of this Fe. Inclusion of the offshore biologically available fraction of the lithogenic iron flux is therefore required to calculate fully the yield of carbon exported per unit iron injected.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...