ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Call number: S 99.0053(92)
    In: Geologisches Jahrbuch
    Type of Medium: Series available for loan
    Pages: 660 S. + 8 Beil.
    Series Statement: Geologisches Jahrbuch : Reihe D 92
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Call number: SR 99.0053(36)
    In: Geologisches Jahrbuch
    Type of Medium: Series available for loan
    Pages: 85 S.
    Series Statement: Geologisches Jahrbuch : Reihe D 36
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Call number: SR 99.0053(87)
    In: Geologisches Jahrbuch
    Type of Medium: Series available for loan
    Pages: 403 S. + 3 Beil.
    Series Statement: Geologisches Jahrbuch : Reihe D, Mineralogie, Petrographie, Geochemie, Lagerstättenkunde H. 87
    Language: English
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-22
    Description: Sedimentological and biostratigraphic investigations of 15 cores (total length: 88 m) from the vicinity of Great Meteor Seamount (about 30° N, 28° W) showed that the calcareous oozes are asymmetricaly distributed around the seamount and vertically differentiated into two intervals. East and west of the seamount, the upper "A"-interval is characterized by yellowish-brown sediment colors and bioturbation; ash layers and diatoms are restricted to the eastern cores. On both seamount flanks, the sediments of the lower "B"-interval are white and very rich in CaC03 with a major fine silt (2-16 μ) mode (mainly coccoliths). Lamination, manganese micronodules, Tertiary foraminifera and discoasters, and small limestone and basalt fragments are typical of the "B"-interval of the eastern cores only. The sediments contain abundant displaced miaterial which was reworked from the upper parts of the seamount. The sedimentation around the seamount is strongly influenced by the kind of displaced material and the intensity of its differentiated dispersal: the sedimentation rates are generally higher on the east than on the west flank (e.g. in "B" : 0.9 cm/1000 y in the W; 3.1 cm/1000 y in the E), and lower for the "A" than for the "B"-interval. The lamination is explained by the combination of increased sedimentation rates with a strong input of material poor in organic carbon producing a hostile environment for benthic life. The CaC03 content of the cores is highly influenced by the proportion of displaced biogenous carbonate material (mainly coccoliths). The genuine in-situ conditions of the dissolution fades are only reflected by the minimum CaCOs values of the cores (Fig. 23; CCD = about 5,500 m; first bend in dissolution curve = 4,000 m; ACD = about 3,400 m). The preservation of the total foraminiferal association depends on the proportion of in-situ versus displaced specimens. In greater water depths (stronger dissolution), for example, the preservation can be improved by the admixture of relatively well preserved displaced foraminifera. Carbonate cementation and the formation of manganese micronodules are restricted to microenvironments with locally increased organic carbon contents (e.g. pellets; foraminifera). The ash layers consist of redeposited, silicic volcanic glass of trachytic composition and Mio-Pliocene age; possibly, they can be derived from the upper part of the seamount. Siliceous organisms, especially diatoms, are frequent close to the ash layers and probably also redeposited. Their preservation was favoured by the increase of the Si02 content in the pore water caused by the silicic volcanic glass. The cores were biostratigraphically subdivided with the aid of planktonic foraminifera and partly also coccoliths. In most cases, the biostratigraphically determined cold- and warm sections could be correlated from core to core (Fig. 21). Almost all cores do not penetrate the Late Pleistocene. All Tertiary fossils are reworked. In general, the warm/cold boundary W2/C2 corresponds with the lithostratigraphic A/B boundary. Benthonic foraminifera indicate the original site of deposition of the displaced material (summit plateau or flanks of the seamount). The asymmetric distribtttion of the sediments around the seamount east and west of the NE-directed antarctic bottom current (AABW) is explained by the distortion of the streamlines by the Coriolis force; by this process the current velocity is increased west of the seamount and decreased east of it (Fig. 25). The different proportion of displaced material within the "A" and "B" interval is explained by changes of the intensity of the oceanic circulation. At the time of "B" the flow of the AABW around the seamount was stronger than during "A"; this can be inferred from the presence of characteristic benthonic foraminifera. The increased oceanic circulation implies an enhanced differentiation of the current velocities, and by that, also of the sedimentation rates, and intensifies the winnowing processes on the seamount plateau. The winnowed sediment material was transported downslope by turbid layers into the deep-sea, incorporated into the current system of the AABW, and asymmetrically deposited around the seamount.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...