ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-11-01
    Print ISSN: 1270-9638
    Electronic ISSN: 1626-3219
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: An account is given of the development history of natural laminar-flow (NLF) airfoil profiles under guidance of an experimentally well-verified theoretical method for the design of airfoils suited to virtually all subcritical applications. This method, the Eppler Airfoil Design and Analysis Program, contains a conformal-mapping method for airfoils having prescribed velocity-distribution characteristics, as well as a panel method for the analysis of potential flow about given airfoils and a boundary-layer method. Several of the NLF airfoils thus obtained are discussed.
    Keywords: AERODYNAMICS
    Type: In: Natural laminar flow and laminar flow control (A93-41776 17-02); p. 143-176.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Airfoil design efforts are studied. The importance of integrating airfoil and aircraft designs was demonstrated. Realistic airfoil data was provided to aid future high altitude, long endurance aircraft preliminary design. Test cases were developed for further validation of the Eppler program. Boundary layer, not pressure distribution or shape, was designed. Substantial improvement was achieved in vehicle performance through mission specific airfoil designed utilizing the multipoint capability of the Eppler program.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Research in Natural Laminar Flow and Laminar-Flow Control, Part 3; p 777-794
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 26; 148-153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Because the airfoil can so strongly impact other aspects of an aircraft configuration, it is important that the airfoil design process be integrated with that of the aircraft to achieve the best possible performance of a new flight vehicle. To aid in preliminary design efforts, several aerodynamic figures of merit are presented which facilitate the matching of the airfoil performance characteristics to those of the aircraft. These figures of merit are fairly general and can assist the airfoil design process for flight vehicles designed for maximum endurance, range, or ceiling. Although specifically applicable to vehicles for which the wing area is sized by some required minimum airspeed, the discussion is pertinent to all airfoil/aircraft matching situations and points the way for developing similar figures of merit to aid the airfoil/aircraft design process for any flight vehicle.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 88-4416
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A new airfoil, the NLF(1)-0115, has been recently designed at the NASA Langley Research Center for use in general-aviation applications. During the development of this airfoil, special emphasis was placed on experiences and observations gleaned from other successful general-aviation airfoils. For example, the flight lift-coefficient range is the same as that of the turbulent-flow NACA 23015 airfoil. Also, although beneficial for reducing drag and having large amounts of lift, the NLF(1)-0115 avoids the use of aft loading which can lead to large stick forces if utilized on portions of the wing having ailerons. Furthermore, not using aft loading eliminates the concern that the high pitching-moment coefficient generated by such airfoils can result in large trim drags if cruise flaps are not employed. The NASA NLF(1)-0115 has a thickness of 15 percent. It is designed primarily for general-aviation aircraft with wing loadings of 718 to 958 N/sq m (15 to 20 lb/sq ft). Low profile drag as a result of laminar flow is obtained over the range from c sub l = 0.1 and R = 9x10(exp 6) (the cruise condition) to c sub l = 0.6 and R = 4 x 10(exp 6) (the climb condition). While this airfoil can be used with flaps, it is designed to achieve c(sub l, max) = 1.5 at R = 2.6 x 10(exp 6) without flaps. The zero-lift pitching moment is held at c sub m sub o = 0.055. The hinge moment for a .20c aileron is fixed at a value equal to that of the NACA 63 sub 2-215 airfoil, c sub h = 0.00216. The loss in c (sub l, max) due to leading edge roughness, rain, or insects at R = 2.6 x 10 (exp 6) is 11 percent as compared with 14 percent for the NACA 23015.
    Keywords: AERODYNAMICS
    Type: AIAA, Proceedings of the 1990 AIAA(FAA Joint Symposium on General Aviation Systems; p 280-291
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The preliminary design of high-altitude, long-endurance RPVs is complicated by the paucity of data concerning airfoils with high lift coefficients at low Re numbers. Attention is presently given to a generic airfoil of this type for the design Re number range of 700,000 to 2 million. Low drag is predicted for lift coefficients from 0.4 (for high speed dashes) to 1.5 (for maximum mission endurance). The airfoil is such that its maximum lift coefficient, at 1.8, is unaffected by the surface contamination that would be encountered during takeoffs and landings in rain or over insect-infested runways.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 87-2554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: A 15-percent-thick, slotted, natural-laminar-flow (SNLF) airfoil, the S103, for general aviation applications has been designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a rapid stall, which does not meet the design goal. Comparisons of the theoretical and experimental results show good agreement. Comparison with the baseline, NASA NLF(1)-0215F airfoil confirms the achievement of the objectives.
    Keywords: Aerodynamics
    Type: NASA/CR-2012-217560 , NF1676L-14322
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The aerodynamic design of a propeller for the trajectory control of a high-altitude, scientific balloon has been performed using theoretical methods developed especially for such applications. The methods are described. Optimum, nonlinear chord and twist distributions have been developed in conjunction with the design of a family of airfoils, the SE403, SE404, and SE405, for the propeller. The very low Reynolds numbers along the propeller blade fall in a range that has yet to be rigorously investigated, either experimentally or theoretically.
    Keywords: Aerodynamics
    Type: NASA/CR-2012-215893 , GSFC.CR.7502.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-jet applications has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The drag-divergence Mach number is predicted to be greater than 0.70.
    Keywords: Aerodynamics
    Type: NASA/CR-2012-217559 , NF1676L-14320
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...