ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 7 (1987), S. 10-19 
    ISSN: 0886-1544
    Keywords: mitosis ; mitotic apparatus ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Quinacrine, an acridine derivative which competitively binds to ATP binding sites, has been used to study the role of ATP requiring molecules in microtubule organization in mitotic PtK1 cells. Brief treatments of metaphase cells with concentrations of quinacrine ranging from 2 to 10 μM decreased spindle length and birefringence in a concentration-dependent manner. With either increasing quinacrine concentrations or duration of treatment, metaphase cells demonstrated a specific reorganization of spindle microtubules. Both polarization and electron microscopy showed a substantial loss of non-kinetochore spindle microtubules with an increase in astral microtubules: this was particularly evident in the region adjacent to the spindle domain. Addition of millimolar concentrations of dinitrophenol to quinacrine-containing medium did not potentiate the response of metaphase cells to quinacrine treatment. Time-lapse video analysis demonstrated that the astral microtubules are the result of reorganization of spindle microtubules. These data suggest that functional ATP binding sites are required to maintain stable interactions between microtubules and that these interactions are responsible for maintaining the bowed configuration of non-kinetochore spindle microtubules which are under compression at metaphase.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 11 (1988), S. 291-302 
    ISSN: 0886-1544
    Keywords: mitosis ; mitotic apparatus ; microtubules ; kinetochores ; metabolic inhibitors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Hyperosmotic sucrose treatment of metaphase PtK-1 cells has been shown to produce a reversible concentration-dependent effect on spindle elongation linked to a functional alteration in the connection of the chromosome to the spindle (Pover et al.: European Journal of Cell Biology 39:366-372, 1985). Spindle elongation, similar to that which occurs at anaphase B, is thought to be driven by the compression stored in the form of microtubule curvature in the nonkinetochore (nkMT) population of microtubules at metaphase (Snyder et al.: European Journal of Cell Biology 35:62-69, 1984 and 39:373-379, 1985). Addition of metabolic inhibitors to Ham's F-12 salts with deoxyglucose (D/F-12 medium) containing 0.4 M sucrose and 1 mM DNP does not within statistical error affect the rate and extent of sucrose-induced spindle elongation; rates and extents are 60-75% of normal anaphase B motions. Electron microscopic analysis of metaphase cells treated with D/F-12 medium and 0.4 M sucrose with 1 mM DNP demonstrates that spindle microtubules lose curvature and become straight in appearance, typical of microtubule organization in untreated anaphase cells. Sucrose-treated cells released into D/F-12 medium show a rapid reduction in spindle length; however, cells treated with either 0.4 M sucrose or 0.4 M sucrose and 1 mM DNP-containing D/F-12 medium and released into DNP-containing D/F-12 medium do not exhibit a significant reduction in spindle length. Electron microscopic analysis links changes in spindle length with microtubule/kinetochore associations. These data suggest that energy required for the initial phases of spindle elongation during anaphase is preloaded into the mitotic spindle by metaphase and does not require additional energy to be expressed as examined by sucrose-induced spindle elongation in the presence of metabolic inhibitors. Second, energy is required to make or maintain (or both) functional chromosome associations with the spindle as measured by reduction in spindle length following sucrose removal.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...