ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2014-04-28
    Description: To quantify the ice-ocean processes which drive dynamic and geometric change at calving outlet glaciers, detailed measurements beyond the capability of present satellites are required. This study presents the application of a cost-effective (〈 USD 2000), unmanned aerial vehicle (UAV) to investigate frontal dynamics at a major outlet draining the western sector of the Greenland Ice Sheet. The UAV was flown over Store Glacier on three sorties during summer 2013 and acquired over 2000 overlapping, geo-tagged images of the calving front at ∼40 cm resolution. Stereo-photogrammetry applied to these images enabled the extraction of high-resolution digital elevation models with an accuracy of ±1.9 m which we used to quantify glaciological processes from early July to August 2013. The central zone of the calving front advanced by ~500 m whilst the lateral margins remained stable. In addition, the ice surface thinned by 3.5 m m−1during the melt-season in association with dynamic thinning. Ice flux through the calving front is calculated at 2.96 × 107 m3 d−1, equivalent to 11 Gt a−1, which is comparable to flux-gate estimates of Store Glacier's annual discharge. Water-filled crevasses were observed throughout the observation period, but covered a limited area (1200 to 12 000 m2 of the ∼5 × 106 m2 surveyed area) and did not appear to exert any significant control over calving. We conclude that the use of repeat UAV surveys coupled with the processing techniques outlined in this paper have a number of important potential applications to tidewater outlet glaciers.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-06
    Description: This study presents the application of a cost-effective, unmanned aerial vehicle (UAV) to investigate calving dynamics at a major marine-terminating outlet glacier draining the western sector of the Greenland ice sheet. The UAV was flown over Store Glacier on three sorties during summer 2013 and acquired over 2000 overlapping, geotagged images of the calving front at an ~40 cm ground sampling distance. Stereo-photogrammetry applied to these images enabled the extraction of high-resolution digital elevation models (DEMs) with vertical accuracies of ± 1.9 m which were used to quantify glaciological processes from early July to late August 2013. The central zone of the calving front advanced by ~500 m, whilst the lateral margins remained stable. The orientation of crevasses and the surface velocity field derived from feature tracking indicates that lateral drag is the primary resistive force and that ice flow varies across the calving front from 2.5 m d−1 at the margins to in excess of 16 m d−1 at the centreline. Ice flux through the calving front is 3.8 × 107 m3 d−1, equivalent to 13.9 Gt a−1 and comparable to flux-gate estimates of Store Glacier's annual discharge. Water-filled crevasses were present throughout the observation period but covered a limited area of between 0.025 and 0.24% of the terminus and did not appear to exert any significant control over fracture or calving. We conclude that the use of repeat UAV surveys coupled with the processing techniques outlined in this paper have great potential for elucidating the complex frontal dynamics that characterise large calving outlet glaciers.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...