ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 117 (1995), S. 12608-12617 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Langmuir 11 (1995), S. 4629-4631 
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Langmuir 11 (1995), S. 2734-2741 
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 7434-7445 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Monte Carlo computer simulation has been used to study water confined between the layers of 2:1 clay minerals. The model systems are based on natural Mg and Na smectites. The simulation cells contain one clay layer, 64 water molecules and four magnesium or eight sodium interlayer cations. These atoms and molecules interact with each other through a new set of effective pair potentials, which we discuss. The calculations are conducted in constant (N,p,T) ensembles, at T=300 K and with a uniaxial pressure, p, of 1 M Pa applied normal to the clay sheets. All the molecules, including the clay sheets, are therefore allowed to move during the simulations. The calculated equilibrium layer spacing is 14.7±0.1 A(ring) with interlayer Mg2+ and 14.2±0.1 A(ring) with interlayer Na+. These spacings compare with experimental values of 15.1 A(ring) and 14.5 A(ring), measured for Mg and Na saturated Chambers montmorillonite, at 79% relative humidity. The corresponding densities and average potential energies of the interlayer water molecules are 1.38±0.04 g cm−3 and −17.63±0.02 kcal mol−1, respectively, for Mg smectite and 1.14±0.04 g cm−3 and −11.77±0.02 kcal mol−1, respectively, for Na smectite. We analyze and compare the interlayer structures in the two systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 3727-3733 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Monte Carlo and molecular dynamics computer simulations have been used to study the structure and dynamics of the interlayer aqueous solution in a colloidal sodium laponite clay at 277 K. The system studied has a clay–clay spacing of 34.06 Å, and contains 1200 interlayer water molecules and 24 sodium counterions. The density profiles for interlayer species show two distinct layers of surface water as one moves away from the clay particles. The innermost of these layers is strongly oriented to form hydrogen bonds to the surface oxygen atoms. Radially averaged pair distributions have been calculated as a function of distance from the clay surfaces, and show that throughout our system the water structure is significantly perturbed from the bulk. In particular, we observe an increase in the second nearest-neighbor oxygen–oxygen distance, similar to that reported for low-density water at 268 K [A. K. Soper and M. A. Ricci, Phys. Rev. Lett. 84, 2881 (2000)]. The majority of the sodium counterions are fully hydrated by six water molecules. These hydrated ions have a strong tendency to remain close to the solid surfaces, as so-called "outer-sphere" complexes. However, we also observe cations further from the clay sheets, in the diffuse layer. Diffusion of water and cations in the plane of the clay sheets is comparable to that in the bulk, but is significantly reduced normal to the clay sheets. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 2991-2996 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The structure of solutions of lithium in ammonia has been studied at 0, 2, 8, and 22 mol % metal (MPM) and 200 K by wide-angle x-ray diffraction. The principal diffraction peak shifts from 2.14(2) Å−1 at 0 MPM to 1.93(3) Å−1 at 22 MPM, reflecting the 30% decrease in overall density as the solution expands to accommodate the excess electrons. We find that the solvent is significantly perturbed over both the short- and intermediate-length scales. The nearest neighbor (N–N) coordination number decreases from 11.8(10) at 0 MPM to 7.6(10) at 22 MPM. In addition, electrostriction around the fourfold coordinated lithium ions causes N–N correlations to become progressively shorter as concentration is increased. At 22 MPM a strong diffraction prepeak is located at 1.05(3) Å−1. Upon dilution to 2 MPM, our experiments find that this feature shifts to 1.29(5) Å−1. We conclude that the prepeak observed in our experiments is a signature of polaronic solvent cavities of approximate radius 2.6 Å. The first solvation shell of an excess electron then contains about 7 ammonia molecules, the second shell about 30 ammonia molecules. This picture is in excellent agreement with interpretation of magnetic resonance data. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 114 (1983), S. 518-525 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0378-1119
    Keywords: Yeast ; protein purification, glycosylation ; recombinant DNA ; regulation ; secretion ; sequencing ; signal sequence ; upstream activating sequence
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Chemical Physics Letters 114 (1985), S. 35-38 
    ISSN: 0009-2614
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 94 (1991), S. 5751-5760 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Neutron diffraction, in conjuction with substitution of deuterium (D) for hydrogen (H), has been used to determine the structure of interlayer water in sodium- and nickel-substituted vermiculites. We have measured the intensities of the (00l) Bragg reflections as a function of relative humidity and H/D content, up to l=30. Difference analysis has then been used to obtain separate density profiles, ρ(z), for both the hydrogen atoms and the oxygen atoms plus the clay sheets. Ni–vermiculite was studied at 84% relative humidity, while Na–vermiculite was studied at both 88% and 30% relative humidity. At these values the layer spacings are 14.40, 14.96, and 11.78 A(ring), respectively. We find that each interlayer nickel ion is coordinated octahedrally to 6.0 water molecules. All of these water molecules are oriented to form a strong hydrogen bond to the adjacent clay surface. We also find that extra water is located close to the clay layers. This additional water is situated within the hexagonal rings of SiO4 and AlO−4 tetrahedra, which comprise the clay surfaces. In the 14.96 A(ring) phase of Na–vermiculite there are an average of 4.9 interlayer water molecules per cation. About half of these water molecules are oriented to form a hydrogen bond to one of the clay surfaces. Additional water is found close to the clay surface, occupying the same hexagonal ring sites as in 14.40 A(ring) Ni–vermiculite. In the 11.78 A(ring) phase of Na–vermiculite there are an average of 2.1 water molecules per interlayer cation. The oxygen atoms of these interlayer water molecules are found close to halfway between the layers, while the hydrogen atoms are directed towards one of the adjacent clay sheets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...