ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 19 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Transcription by RNA polymerase utilizing the alternative sigma factor σ54 is regulated by a distinct class of positive activators designated the σ54-dependent family. The activities of these regulators are themselves modulated in response to a wide variety of environmental signals. Factors that modulate the expression or the activity of the regulatory protein in response to chemical and metabolic changes are ultimately responsible for determining the level of expression of σ54-dependent genes and hence the diverse bacterial functions that they encode. Many members of the σ54-dependent family are part of two-component sensor-response systems. This MicroReview emphasizes recent data concerning the activities of a distinct subgroup of the σ54-dependent regulators that directly sense and respond with transcriptional activation to the presence of small effector molecules in their environment. The functional consequences of effector activation in terms of regulation of the enzymatic (ATPase) activity of these transcriptional activators and interdomain interactions are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd, UK
    Molecular microbiology 28 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The Pseudomonas-derived σ54-dependent regulator DmpR has an amino-terminal A-domain controlling the specificity of activation by aromatic effectors, a central C-domain mediating an ATPase activity essential for transcriptional activation and a carboxy-terminal D-domain involved in DNA binding. In the presence of aromatic effectors, the DmpR protein promotes transcription from the −24, −12 Po promoter controlling the expression of specialized (methyl)phenol catabolic enzymes. Previous analysis of DmpR has led to a model in which the A-domain acts as an interdomain repressor of DmpR's ATPase and transcriptional promoting property until specific aromatic effectors are bound. Here, the autonomous nature of the A-domain in exerting its biological functions has been dissected by expressing portions of DmpR as independent polypeptides. The A-domain of DmpR is shown to be both necessary and sufficient to bind phenol. Analysis of phenol binding suggests one binding site per monomer of DmpR, with a dissociation constant of 16 μM. The A-domain is also shown to have specific affinity for the C-domain and to repress the C-domain mediated ATPase activity in vitro autonomously. However, physical uncoupling of the A-domain from the remainder of the regulator results in a system that does not respond to aromatics by its normal derepression mechanism. The mechanistic implications of aromatic non-responsiveness of autonomously expressed A-domain, despite its demonstrated ability to bind phenol, are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 31 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Transcription from the Pseudomonas-derived σ54-dependent Po promoter of the dmp operon is mediated by the aromatic-responsive regulator DmpR. However, physiological control is superimposed on this regulatory system causing silencing of the DmpR-mediated transcriptional response in rich media until the transition between exponential and stationary phase is reached. Here, the positive role of the nutritional alarmone (p)ppGpp in DmpR regulation of the Po promoter has been identified and investigated in vivo. Overproduction of (p)ppGpp in a Pseudomonas reporter system was found to allow an immediate transcriptional response under normally non-permissive conditions. Conversely (p)ppGpp-deficient Escherichia coli strains were found to be severely defective in DmpR-mediated transcription, demonstrating the requirement for this metabolic signal. A subset of mutations in the β, β′ and σ70 subunits of RNA polymerase, which confer prototrophy on ppGpp0E. coli, was also found to restore specific DmpR-mediated transcription from Po, suggesting that the metabolic signal is mediated directly through the σ54-RNA polymerase. These data provide a direct mechanistic link between the physiological status of the cell and expression from σ54 promoters.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 5 (1994), S. 219-236 
    ISSN: 1572-9729
    Keywords: Phenols ; oxygenases ; meta-cleavage pathway ; dehydrogenases ; Pseudomonas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 195 (1984), S. 523-529 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Transcription at various points in the trfA region of broad host range plasmid RK2 has been analysed by measuring expression of the galK gene inserted at EcoRI sites introduced previously by Tn1723 transposition mutagenesis. Rightward transcription (anti-clockwise on RK2) probably from a single promoter, proceeds across two open reading frames coding for a 13 kD polypeptide of unknown function, and the trfA gene, which provides a protein(s) essential for plasmid replication. This transcription is not auto-regulated by the products of either open reading frame and is also not subject to significant attenuation prior to the end of the trfA open reading frame. Leftward transcription appears to be directed by at least two well separated promoters, the more leftward being three to four times stronger than the more rightward. Rightward, but not leftward, transcription is repressed about 9-fold by the trfB locus of RK2 alone (so far not separable from the loci korA and korD) in trans while the combination of the korB and trfB loci in trans represses both rightward transcription (about 100-fold) and leftward transcription (the stronger activity by 10 to 15-fold). Regulation of these operons is therefore qualitatively different. The kilD locus in the trfA region, which is suppressed by korD (trfB) is thus probably part of the rightward (trfA) operon, while leftward transcription may represent the start of an operon containing kilB. The results suggest that RK2 kor loci act by repressing transcription of kil loci and that the kil and kor control circuits may be part of an interlocking system of RK2 genes involved in replication and stable maintenance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 220 (1990), S. 294-300 
    ISSN: 1617-4623
    Keywords: Pseudomonas ; Catabolic pathway ; Phenol biodegradation ; Gene organization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The gene organization of the phenol catabolic pathway of Pseudomonas CF600 has been investigated. This strain can grow on phenol and some methylated phenols by virtue of an inducible phenol hydroxylase and meta-cleavage pathway enzymes. The genes coding for these enzymes are located on pVI150, an IncP-2 degradative mega plasmid of this strain. Twenty-three kilobases of contiguous DNA were isolated from lambda libraries constructed from strains harbouring wild type and Tn5 insertion mutants of pV1150. A 19.9 kb region of this DNA has been identified which encodes all the catabolic genes of the pathway. Using transposon mutagenesis, polypeptide analysis and expression of subfragments of DNA, the genes encoding the first four enzymatic steps of the pathway have been individually mapped and found to lie adjacent to each other. The order of these genes is the same as that for isofunctional genes of TOL plasmid pWWO and plasmid NAH7.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-20
    Description: The alarmone nucleotides guanosine pentaphosphate (pppGpp) and tetraphosphate (ppGpp), collectively referred to as (p)ppGpp, are key regulators of bacterial growth, stress adaptation, pathogenicity, and antibiotic tolerance. We show that the tetrameric small alarmone synthetase (SAS) RelQ from the Gram-positive pathogen Enterococcus faecalis is a sequence-specific RNA-binding protein. RelQ’s enzymatic and RNA binding activities are subject to intricate allosteric regulation. (p)ppGpp synthesis is potently inhibited by the binding of single-stranded RNA. Conversely, RelQ’s enzymatic activity destabilizes the RelQ:RNA complex. pppGpp, an allosteric activator of the enzyme, counteracts the effect of RNA. Tetramerization of RelQ is essential for this regulatory mechanism, because both RNA binding and enzymatic activity are abolished by deletion of the SAS-specific C-terminal helix 5α. The interplay of pppGpp binding, (p)ppGpp synthesis, and RNA binding unites two archetypal regulatory paradigms within a single protein. The mechanism is likely a prevalent but previously unappreciated regulatory switch used by the widely distributed bacterial SAS enzymes.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1994-12-01
    Print ISSN: 0923-9820
    Electronic ISSN: 1572-9729
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...