ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-06-18
    Description: We compare the set of local galaxies having dynamically measured black holes with a large, unbiased sample of galaxies extracted from the Sloan Digital Sky Survey. We confirm earlier work showing that the majority of black hole hosts have significantly higher velocity dispersions than local galaxies of similar stellar mass. We use Monte Carlo simulations to illustrate the effect on black hole scaling relations if this bias arises from the requirement that the black hole sphere of influence must be resolved to measure black hole masses with spatially resolved kinematics. We find that this selection effect artificially increases the normalization of the M bh – relation by a factor of at least ~3; the bias for the M bh – M star relation is even larger. Our Monte Carlo simulations and analysis of the residuals from scaling relations both indicate that is more fundamental than M star or effective radius. In particular, the M bh – M star relation is mostly a consequence of the M bh – and – M star relations, and is heavily biased by up to a factor of 50 at small masses. This helps resolve the discrepancy between dynamically based black hole–galaxy scaling relations versus those of active galaxies. Our simulations also disfavour broad distributions of black hole masses at fixed . Correcting for this bias suggests that the calibration factor used to estimate black hole masses in active galaxies should be reduced to values of f vir  ~ 1. Black hole mass densities should also be proportionally smaller, perhaps implying significantly higher radiative efficiencies/black hole spins. Reducing black hole masses also reduces the gravitational wave signal expected from black hole mergers.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...