ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: Understanding the biogeochemical processes reg- ulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully ‘‘animating’’ the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quanti- fication of their effects on carbon storage and exchange among terrestrial and aquatic reservoirs and the atmosphere. To encourage more hypothesis-driven experimental research that quantifies animal effects we discuss the mecha- nisms by which animals may affect carbon ex- changes and storage within and among ecosystems and the atmosphere. We illustrate how those mechanisms lead to multiplier effects whose magnitudes may rival those of more tra- ditional carbon storage and exchange rate esti- mates currently used in the carbon budget. Many animal species are already directly managed. Thus improved quantitative understanding of their influence on carbon budgets may create oppor- tunity for management and policy to identify and implement new options for mitigating CO2 re- lease at regional scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-23
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 17 (2014): 344-359, doi:10.1007/s10021-013-9715-7.
    Description: Understanding the biogeochemical processes regulating carbon cycling is central to mitigating atmospheric CO2 emissions. The role of living organisms has been accounted for, but the focus has traditionally been on contributions of plants and microbes. We develop the case that fully “animating” the carbon cycle requires broader consideration of the functional role of animals in mediating biogeochemical processes and quantification of their effects on carbon storage and exchange among terrestrial and aquatic reservoirs and the atmosphere. To encourage more hypothesis-driven experimental research that quantifies animal effects we discuss the mechanisms by which animals may affect carbon exchanges and storage within and among ecosystems and the atmosphere. We illustrate how those mechanisms lead to multiplier effects whose magnitudes may rival those of more traditional carbon storage and exchange rate estimates currently used in the carbon budget. Many animal species are already directly managed. Thus improved quantitative understanding of their influence on carbon budgets may create opportunity for management and policy to identify and implement new options for mitigating CO2 release at regional scales.
    Description: We thank YCEI for its sponsorship and funding. Regular and OPUS grants from US National Science Foundation, grants from the UK Natural Environmental Research Council and UK Biotechnology and Biological Sciences Research Council, and funding from the Nippon Foundation - UBC Nereus Program, also supported our work.
    Description: 2014-09-19
    Keywords: Animal mediation of carbon cycling ; Animal multiplier effects ; Animal management for carbon storage ; Biogeochemical cycling ; Regional carbon budgets
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 93 (1993), S. 327-335 
    ISSN: 1432-1939
    Keywords: Food chain structure ; Bottom-up control ; Top-down control ; Population dynamics ; Grasshoppers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study provides insight into the importance of top carnivores (top-down control) and nutrient inputs (bottom-up control) in structuring food chains in a terrestrial grassland system. Qualitative predictions about food chain structure are generated using 4 simple models, each differing in assumptions about some key component in the population dynamics of the herbivore trophic level. The four model systems can be classified broadly into two groups (1) those that assume plant resource intake by herbivores is limited by search rate and handling time as described by classic Lotka-Volterra models; and (2) those that assume plant resource intake by herbivores is limited externally by the supply rate of resources as described by alternatives to Lotka-Volterra formulations. The first class of models tends to ascribe greater importance to top-down control of food chain structure whereas the second class places greater weight on bottom-up control. I evaluated the model predictions using experimentally assembled grassland food chains in which I manipulated nutrient inputs and carnivore (wolf spider) abundance to determine the degree of top-down and bottom-up control of grassland plants and herbivores (grasshoppers). The experimental results were most consistent with predictions of the second class of models implying a predominance of bottom-up control of food chain structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Herbivory ; Australia, kangaroos ; Plantanimal interactions ; Plant defenses
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We investigated the effects of thorns and spines on the feeding of 5 herbivore species in arid Australia. The herbivores were the rabbit (Oryctolagus cuniculus), euro kangaroo (Macropus robustus), red kangaroo (Macropus rufus), sheep (Ovis aries), and cattle (Bos taurus). Five woody plants without spines or thorns and 6 woody plants with thorns were included in the study. The spines and thorns were not found to affect the herbivores' rates of feeding (items ingested/min), but they did reduce the herbivores' rates of biomass ingestion (g-dry/item). The reduction in biomass ingested occurred in two ways: at a given diameter, twigs with spines and thorns had less mass than undefended plants, and the herbivores consumed twigs with smaller diameters on plants with spines and thorns. The relative importance of the two ways that twigs with spines and thorns provided less biomass varied with herbivore body mass. Reduced twig mass was more important for small herbivores, while large herbivores selected smaller diameters. The effectiveness of spines and thorns as anti-herbivore defenses did not vary with the evolutionary history of the herbivores (i.e. native vs. introduced). Spines and thorns mainly affected the herbivores' selection of maximum twig sizes (reducing diameter and mass), but the minimum twig sizes selected were also reduced.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 7 (1993), S. 525-529 
    ISSN: 1573-8477
    Keywords: linear programming ; optimal foraging ; herbivores
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-8477
    Keywords: ecological simulator ; food web complexity ; individual-based behaviour ; spatially explicit dynamics ; trophic interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We present a prototype simulator that enables one to explore the influence of individual behaviour on the dynamics and structural complexity of food webs. In the simulations, individuals act according to simple, biologically plausible rules in a spatially explicit setting. We present the results of a series of simulation experiments on artificial, tri-trophic level food chains used to calibrate the simulator against real-world systems and to demonstrate the simulator's promise for ecological modelling. Our primary objective was to discover the biological features leading to stability of artificial food chains over ecological time and under different conditions of trophic efficiency. This involved a qualitative analysis of food chains comprised of a plant, a herbivore and a carnivore species. We explored the consequences of allowing individual heterotrophs to make active choices about resource selection (perception and intentional behaviour) under high and low degrees of trophic efficiency. We found that individuals had to adopt realistic behavioural ecological strategies, such as active resource selection, for systems to persist, especially under conditions in which trophic efficiencies were of the magnitude observed in real systems (e.g. 10%). Our results reaffirm previous convictions that a better understanding of food web interactions in real-world systems will require approaches that blend animal behavioural ecology with population and community ecology. However, the evidence comes from a new mathematical perspective.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-8477
    Keywords: adaptive behaviour ; community dynamics ; functional response ; regulation ; stability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A comparatively recent focus in consumer–resource theory has been the examination of whether adaptive foraging by consumers, manifested through the functional response, can stabilize consumer–resource dynamics. We offer a brief synthesis of progress on this body of theory and identify the conditions likely to lead to stability. We also fill a gap in our understanding by analysing the potential for adaptively foraging herbivores, which are constrained by time available to feed and digestive capacity, to stabilize dynamics in a single-herbivore/two-plant resource system. Because foraging parameters of the adaptive functional response scale allometrically with herbivore body size, we parameterized our model system using published foraging data for an insect, a small mammal and a large mammal spanning four orders of magnitude in body size, and examined numerically the potential for herbivores to stabilize the consumer–resource interactions. We found in general that the herbivore–plant equilibrium will be unstable for all biologically realistic herbivore population densities. The instability arose for two reasons. First, each herbivore exhibited destabilizing adaptive consumer functional responses (i.e. density-independent or inversely density-dependent) whenever they selected a mixed diet. Secondly, the numerical response of herbivores, based on our assumption of density-independent herbivore population growth, results in herbivores reaching densities that enable them to exploit their resource populations to extinction. Our results and those of studies we reviewed indicate that, in general, adaptive consumers are unlikely to stabilize the dynamics of consumer–resource systems solely through the functional response. The implications of this for future work on consumer–resource theory are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-8477
    Keywords: adaptive behaviour ; environmental complexity ; multi-objective optimization ; single-objective optimization ; trade-offs ; variability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A major objective in behavioural and evolutionary ecology is to understand how animals make decisions in complex environments. Examinations of animal behaviour typically use optimization models to predict the choices animals ought to make. The performance of animals under specific conditions is then compared against the predicted optimal strategy. This optimization approach has come into question because model predictions often do not match animal behaviour exactly. This has led to serious scepticism about the ability of animals to exhibit optimal behaviour in complex environments. We show that conventional approaches that compare observed animal behaviour with single optimal values may bias the way we view real-world variation in animal performance. Considerable insight into the abilities of animals to make optimal decisions can be gained by interpreting why variability in performance exists. We introduce a new theoretical framework, called ‘multi-objective optimization’, which allows us to examine decision-making in complex environments and interpret the meaning of variability in animal performance. A multi-objective approach defines the set of efficient choices animals may make in attempting to reach compromises among multiple conflicting demands. In a multi-objective framework, we may see variation in animal choices, but, unlike single-objective optimizations where there is one ‘best solution’, this variation may represent a range of adaptive compromises to conflicting objectives. An important feature of this approach is that, within the set of efficient alternatives, no choice can be considered to yield higher fitness, a priori, than any other choice. Thus, variability and optimal behaviour may be entirely consistent. We illustrate our point using selected examples from foraging theory where there is already an optimization program in place.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 6 (1992), S. 125-141 
    ISSN: 1573-8477
    Keywords: deer ; foraging experiment ; optimal diet ; risk-sensitive foraging ; twig selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Energy intake rates of wintering deer vary over time because of variation in the abundance and quality of their natural foods. Accordingly, there is a chance that energy requirements will not be satisfied in a feeding period. This is especially critical because deer are reproductive during winter; hence selecting diets to minimize the risk of starvation may not maximize fitnss. I examined diet selection by white-tailed deer (Odocoileus virginianus) using a risk-sensitive foraging model which predicts the optimal diet when foragers face starvation risks during a reproductive period. Optimal diets were estimated by quantifying the mean and variance in energy intake rate deer could obtain when selecting different potential diets and substituting these values into functions for estimating offspring production and starvation risk. I conducted a field experiment to ask whether deer selected deciduous and coniferous twigs according to model predictions. Starvation risk was manipulated by providing deer supplemental feed. When faced with starvation risks, deer appeared to select diets that balanced offspring production with starvation risk. When starvation risk was climinated, deer tended to select diets that simply maximized their mean energy intake rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...