ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2008-09-09
    Print ISSN: 0722-4028
    Electronic ISSN: 1432-0975
    Topics: Biology , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-07
    Description: In the Mediterranean, the northern Adriatic Sea shows most features known to promote late-summer hypoxia and anoxia. These features, along with anthropogenic eutrophication and marine snow events, have led to repeated benthic mortalities here. The present study was designed to document the post-anoxia macrofauna dynamics. We deployed an underwater instrument to induce small-scale anoxia in situ (total area 0.5 m2). Two time-lapse camera deployments examined short-term scavenging of the moribund and dead organisms (multi-species clumps consisting of sponges and ascidians) over a 3-day period (August 2008: 71.5 h, September 2008: 67.5 h). Longer-term recovery (2 yr) in the same two plots was examined with an independent photo-series. Predators and scavengers arrived in a distinct sequence. The first to arrive were demersal (Gobius niger, Serranus hepatus) and benthopelagic fishes (Diplodus vulgaris, Pagellus erythrinus), followed by hermit crabs (Paguristes eremita, showing a clear day/night rhythm in presence) and gastropods (Hexaplex trunculus). This sequence of arrival is attributed to the relative speeds of the organisms and their densities. The scavengers remained in dense aggregations (e.g. up to 33 P. eremita individuals at one time) as long as the dead organisms were available. The whole sessile fauna was largely removed or consumed within 7 (August plot) and 13 (September plot) days after anoxia. No macroepibenthic recovery took place in the experimental plots one and two years after anoxia. This study underlines the sensitivity of this soft-bottom community and supports calls for reducing additional anthropogenic disturbances such as damaging commercial fishing practices that impede recolonization and threaten benthic community structure and function over the long-term.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-27
    Description: Coastal hypoxia and anoxia have become a global key stressor to marine ecosystems, with almost 500 dead zones recorded wordwide. By triggering cascading effects from the individual organism to the community and ecosystem-level, oxygen depletions threat marine biodiversity and can alter ecosystem structure and function. By integrating both physiological function and ecological processes, animal behaviour is ideal for assessing the stress state of benthic macrofauna to low dissolved oxygen. The initial response of organisms can serve as an early-warning signal, while the successive behavioural reactions of key species indicate hypoxia levels and help assess community degradation. Here we document the behavioural responses of a representative spectrum of benthic macrofauna in the natural setting in the Northern Adriatic Sea, Mediterranean. We experimentally induced small-scale anoxia with a benthic chamber in 24 m depth to overcome the difficulties in predicting the onset of hypoxia, which often hinders full documentation in the field. The behavioural reactions were documented with a time-lapse camera. Oxygen depletion elicited significant and repeatable changes in general (visibility, locomotion, body movement and posture, location) and species-specific reactions in virtually all organisms (302 individuals from 32 species and 2 species groups). Most atypical (stress) behaviours were associated with specific oxygen thresholds: arm-tipping in the ophiuroid Ophiothrix quinquemaculata, for example, with the onset of mild hypoxia (〈 2 mL O2 L−1), the emergence of polychates on the sediment surface with moderate hypoxia (〈 1 mL O2 L−1), the emergence of the infaunal sea urchin Schizaster canaliferus on the sediment with severe hypoxia (〈 0.5 mL O2 L−1) and heavy body rotations in sea anemones with anoxia. Other species changed their activity patterns, i.e. circadian rhythm in the hermit crab Paguristes eremita or the bioherm-associated crab Pisidia longimana. Intra- and interspecific reactions were weakened or changed: decapods ceased defensive and territorial behaviour, and predator-prey interactions and relationships shifted. This nuanced scale of resolution is a useful tool to interpret present benthic community status (behaviour) and past mortalities (community composition, e.g. survival of tolerant species). This information on the sensitivity (onset of stress response), tolerance (mortality, survival), and characteristics (i.e. life habit, functional role) of key species also helps predict potential future changes in benthic structure and ecosystem functioning. This integrated approach can transport complex ecological processes to the public and decision-makers and help define specific monitoring, assessment and conservation plans.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-21
    Description: Coastal hypoxia and anoxia have become a global key stressor to marine ecosystems, with almost 500 dead zones recorded worldwide. By triggering cascading effects from the individual organism to the community- and ecosystem level, oxygen depletions threaten marine biodiversity and can alter ecosystem structure and function. By integrating both physiological function and ecological processes, animal behaviour is ideal for assessing the stress state of benthic macrofauna to low dissolved oxygen. The initial response of organisms can serve as an early warning signal, while the successive behavioural reactions of key species indicate hypoxia levels and help assess community degradation. Here we document the behavioural responses of a representative spectrum of benthic macrofauna in the natural setting in the Northern Adriatic Sea (Mediterranean). We experimentally induced small-scale anoxia with a benthic chamber in 24 m depth to overcome the difficulties in predicting the onset of hypoxia, which often hinders full documentation in the field. The behavioural reactions were documented with a time-lapse camera. Oxygen depletion elicited significant and repeatable changes in general (visibility, locomotion, body movement and posture, location) and species-specific reactions in virtually all organisms (302 individuals from 32 species and 2 species groups). Most atypical (stress) behaviours were associated with specific oxygen thresholds: arm-tipping in the ophiuroid Ophiothrix quinquemaculata, for example, with the onset of mild hypoxia (〈 2 mL O2 L−1), the emergence of polychaetes on the sediment surface with moderate hypoxia (〈 1 mL O2 L−1), the emergence of the infaunal sea urchin Schizaster canaliferus on the sediment with severe hypoxia (〈 0.5 mL O2 L−1) and heavy body rotations in sea anemones with anoxia. Other species changed their activity patterns, for example the circadian rhythm in the hermit crab Paguristes eremita or the bioherm-associated crab Pisidia longimana. Intra- and interspecific reactions were weakened or changed: decapods ceased defensive and territorial behaviour, and predator–prey interactions and relationships shifted. This nuanced scale of resolution is a useful tool to interpret present benthic community status (behaviour) and past mortalities (community composition, e.g. survival of tolerant species). This information on the sensitivity (onset of stress response), tolerance (mortality, survival), and characteristics (i.e. life habit, functional role) of key species also helps predict potential future changes in benthic structure and ecosystem functioning. This integrated approach can transport complex ecological processes to the public and decision-makers and help define specific monitoring, assessment and conservation plans.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-11-26
    Description: The northern Adriatic Sea is one of nearly 500 areas worldwide suffering widespread mortalities due to anoxia. The present study documents post-anoxia macrofauna dynamics after experimentally inducing small-scale anoxia in 24 m depth (2 plots, each 50 cm × 50 cm). Time-lapse camera deployments examined short-term scavenging of the moribund and dead organisms (multi-species clumps consisting of sponges and ascidians) over two 3-day periods (August 2009: 71.5 h, September 2009: 67.5 h). Longer term recovery (days to 2 yr) in the same two plots was examined with an independent photo series. Scavengers arrived quickly and in a distinct sequence: demersal (Gobius niger, Serranus hepatus) and benthopelagic fishes (Diplodus vulgaris, Pagellus erythrinus), followed by hermit crabs (Paguristes eremita, showing a clear day/night rhythm in presence) and gastropods (Hexaplex trunculus). This sequence is attributed to the relative speeds and densities of the organisms. The sessile fauna was largely removed or consumed within seven (August plot) and 13 (September plot) days after anoxia, confirming our first hypothesis that decaying organisms are quickly utilised. The scavengers remained in dense aggregations (e.g. up to 33 P. eremita individuals at one time) as long as dead organisms were available. No recovery of sessile macroepibenthos macroepibenthos occurred in the experimental plots one and two years after anoxia, undermining our second hypothesis that small denuded areas are more rapidly recolonised. This study underlines the sensitivity of this soft-bottom community and supports calls for reducing additional anthropogenic disturbances such as fishing practices that further impede recolonisation and threaten benthic community structure and function over the long term.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-15
    Description: Coastal hypoxia and anoxia have become a global key stressor to marine ecosystems, with almost 500 dead zones recorded worldwide. By triggering cascading effects from the individual organism to the community-and ecosystem level, oxygen depletions threaten marine biodiversity and can alter ecosystem structure and function. By integrating both physiological function and ecological processes, animal behaviour is ideal for assessing the stress state of benthic macrofauna to low dissolved oxygen. The initial response of organisms can serve as an early warning signal, while the successive behavioural reactions of key species indicate hypoxia levels and help assess community degradation. Here we document the behavioural responses of a representative spectrum of benthic macrofauna in the natural setting in the Northern Adriatic Sea (Mediterranean). We experimentally induced small-scale anoxia with a benthic chamber in 24m depth to overcome the difficulties in predicting the onset of hypoxia, which often hinders full documentation in the field. The behavioural reactions were documented with a time-lapse camera. Oxygen depletion elicited significant and repeatable changes in general (visibility, locomotion, body movement and posture, location) and species-specific reactions in virtually all organisms (302 individuals from 32 species and 2 species groups). Most atypical (stress) behaviours were associated with specific oxygen thresholds: arm-tipping in the ophiuroid Ophiothrix quinquemaculata, for example, with the onset of mild hypoxia (〈 2mLO(2) L-1), the emergence of polychaetes on the sediment surface with moderate hypoxia (〈 1mLO(2) L-1), the emergence of the infaunal sea urchin Schizaster canaliferus on the sediment with severe hypoxia (〈 0.5mLO(2) L-1) and heavy body rotations in sea anemones with anoxia. Other species changed their activity patterns, for example the circadian rhythm in the hermit crab Paguristes eremita or the bioherm-associated crab Pisidia longimana. Intra-and interspecific reactions were weakened or changed: decapods ceased defensive and territorial behaviour, and predator-prey interactions and relationships shifted. This nuanced scale of resolution is a useful tool to interpret present benthic community status (behaviour) and past mortalities (community composition, e.g. survival of tolerant species). This information on the sensitivity (onset of stress response), tolerance (mortality, survival), and characteristics (i. e. life habit, functional role) of key species also helps predict potential future changes in benthic structure and ecosystem functioning. This integrated approach can transport complex ecological processes to the public and decision-makers and help define specific monitoring, assessment and conservation plans
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...