ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-08-01
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2022-09-15
    Description: The abundance of mantle-derived rocks and lavas, in combination with its tectonic evolution, render Mexico a perfect laboratory to investigate the chemical and the isotopic heterogeneity of the lithospheric mantle. New data on the composition of noble gases and CO2 in Mexican mantle xenoliths and lavas is reported. Our samples consist of six ultramafic nodules from the Durango Volcanic Field (DVF) and the San Quintin Volcanic Field (SQVF), monogenetic complexes belonging to the Mexican Basin and Range province; and four lavas from the Sierra Chichinautzin (SCN), a Quaternary monogenetic volcanic field located in the Mexican volcanic arc. Ne and Ar isotopes in fluid inclusions reveal mixing between atmospheric and MORB-like fluids (e.g., 40Ar/36Ar 〈 1,200). DVF and SQVF nodules record low 40Ar/36Ar and 4He/20Ne that confirm the existence of recycled atmospheric-derived noble gases in the local mantle. The averages of the Rc/Ra ratios (3He/4He corrected for atmospheric contamination) measured in Mexican localities are within the MORB-like range: DVF= 8.39 ± 0.24 Ra, SQVF = 7.43 ± 0.19 Ra and SCN lavas = 7.15 ± 0.33 Ra (1σ). With the aim of assessing the isotopic variability of the Mexican lithospheric mantle, the above results were compared with similar data previously obtained from ultramafic nodules found in the Ventura Espiritu Santo Volcanic Field (VESVF), another Quaternary monogenetic volcanic complex belonging the Basin and Range. The higher 3He/4He ratios in DVF relative to those reported for the VESVF and the SQVF are explained as reflecting different ages of mantle refertilization, triggered by the retreating of the Farallon slab (~40 Ma ago) and associated delamination slab processes. We propose that the DVF mantle was refertilized more recently (〈10 Ma ago) than the mantle beneath the SQVF and VESVF (~40–20 Ma ago). On the other hand, He-Ne- Ar compositions of SCN olivines share similarities with VESVF xenoliths,suggesting a relatively homogeneous lithospheric mantle in central Mexico. Finally, DVF and the SCN samples exhibit δ13C values within the MORB range (comparable to other values previously reported in fluid inclusions and fumaroles from Popocatépetl, Colima—Ceboruco volcanoes). While we explain the MORB-like carbon signatures of the DVF samples as the result of the above-mentioned refertilization process, the SCN signatures likely reflect either (i) trapping of isotopically fractionated CO2 derived from magmatic degassing or (ii) a mantle source unaffected by subduction-related crustal carbon recycling.
    Description: Published
    Description: 973645
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Basin and Range province ; Trans-mexican Volcanic Belt ; Mexican mantle xenoliths ; arc lavas ; fluid inclusions ; noble gas isotopes ; CO2 isotopes ; carbon recycling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-16
    Description: We present the first isotopic (noble gases and CO2) characterization of fluid inclusions coupled to Raman microspectroscopy analyses in mantle xenoliths from Central Mexico, a geodynamically complex area where the Basin and Range extension was superimposed on the Farallon subduction (terminated at 28 Ma). To characterize the isotopic signature of the Central Mexican lithospheric mantle, we focus on fluid inclusions entrapped in mantle xenoliths found in deposits of the Joya Honda maar (JH), a Quaternary monogenetic volcano belonging to the Ventura Espiritu Santo Volcanic Field (VESVF) in the state of San Luis Potosí (central Mexico). Thirteen ultramafic plagioclase-free xenoliths were selected, all exhibiting a paragenesis Ol 〉 Opx 〉 Cpx 〉 〉 Sp, and being classified as spinel-lherzolites and harzburgites. All xenoliths bring textural evidence of interstitial glass veins bearing dendritic trails of secondary melt and fluid inclusions (composed of silicate glass ± CO2 ± Mg-Ca carbonates ± pyrite). These are related to pervasive mantle metasomatism driven by carbonate-rich silicate melt. The Ar and Ne systematics reflect mixing between MORB-like upper mantle and atmospheric fluids, the latter interpreted as reflecting a recycled air component possibly inherited from the Farallon plate subduction. The 3He/4He ratios vary between 7.13 and 7.68 Ra, within the MORB range (7–9 Ra), and the 4He/40Ar* ratios (0.4–3.11) are similarly close to the expected range of the fertile mantle (1–5). Taken together, these pieces of evidence suggest that (i) either the mantle He budget was scarcely modified by the Farallon plate subduction, and/or (ii) that any (large) crustal contribution was masked by a later metasomatism/refertilization episode, possibly during the subsequent Basin and Range extension. A silicate melt-driven metasomatism/refertilization (revealed by the association between glass veins and fluid inclusions) is consistent with calculated helium residence time for the Mexican lithospheric mantle (20 to 60 Ma) that overlaps the timing of the above geodynamic events. We propose that, after the refertilization event (e.g., over the last ~20 Ma), the lithospheric mantle has evolved in a steady-state, becoming slightly more radiogenic. We also estimated 3He fluxes (0.027–0.080 mol/g), 4He production rates (340–1000 mol/yr), and mantle CO2 fluxes (3.93 × 107 mol/yr to 1.18 × 108 mol/yr) using the helium isotopic values measured in JH mantle xenoliths. Finally, the JH xenoliths exhibit CO2/3He ratios comparable to those of the upper mantle (from 3.38 × 108 to 3.82 × 109) but more positive δ13C values (between - 1.0 and - 2.7‰), supporting the involvement of a crustal carbonate component. We propose that the metasomatic silicate melts recycled a crustal carbonate component, inherited by the Farallon plate subduction.
    Description: Published
    Description: 120270
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Mexican mantle xenoliths ; Fluid inclusions ; Noble gases ; CO2 ; mantle refertilization ; Carbonate recycling ; 04.01. Earth Interior ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-11-16
    Description: The Canary Islands, in the eastern Atlantic, are among the most enigmatic Oceanic Island provinces on Earth, as the mantle source feeding its volcanism exhibits wide spatial heterogeneity and a multiplicity of sources. Multiisotope whole-rock studies have long revealed the presence of a recycled oceanic crust/lithosphere component in the mantle source. However, noble gas systematics have been more challenging to interpret, and the available carbon isotope data is limited and cannot support/dismiss this interpretation. Here, we present the very first isotopic characterisation of CO2 and noble gases (He-Ne-Ar) in fluid inclusions (FI) in minerals hosted in mantle xenoliths from El Hierro, the youngest and westernmost island of the Canary volcanic archipelago. Six fresh xenoliths from El Julan cliff valley were analysed (3 spinel lherzolites and 3 spinel harzburgites). We find carbon isotopic compositions of CO2 in FI (δ13C) ranging from 􀀀 2.38 to 􀀀 1.23‰ in pyroxenes and from 􀀀 0.19 to +0.96‰ in olivines. These unusually positive δ13C values, well above the typical mantle range (􀀀 8‰ 〈 δ13C 〈 􀀀 4‰), prove, for the first time, the presence of a recycled crustal carbon component in the local source mantle. We interpret this 13C-rich component as inherited from a mantle metasomatism event driven by fluids carrying carbon from C. In contrast, our El Hierro xenoliths identify a depleted mantle-like He signature, with an average Rc/Ra ratio (3He/4He normalised to air ratio and corrected for atmospheric contamination) of 7.45 ± 0.26 Ra. The involvement of depleted mantle-like fluids, variably admixed with air-derived components (possibly recycled via paleo-subduction event(s)), is corroborated by Ne-Ar isotopic compositions. The depleted mantle-like He signature suggests instead the involvement of a primordial He source in the local lithospheric mantle and indicates a marginal role played by past subduction events in modifying the local mantle He budget. When put in the context of previous 3He/4He measurements in FI and surface gases along the Canary archipelago, our results confirm an overall west-to-east decrease of Rc/Ra ratios, which may be interpreted as due to increasing contributions from the African sub-continental mantle, the addition of radiogenic 4He during magma migration in the oceanic crust (whose thickness increases eastward) and/or magma ageing.
    Description: Published
    Description: 106414
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Canary Islands ; El Hierro ; Mantle xenoliths ; Fluid inclusions ; Recycled carbon ; noble gases ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...