ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 7 (1980), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 76 (1991), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The exotoxin pertussis toxin (PT) produced by virulent Bordetella pertussis bacteria is regarded as the main virulence factor of the organism and held responsible for most of its pathological effects. Identification of functional sites on PT would greatly facilitate site-specific detoxification and thus also the development of a new vaccine. For the investigation of structure-function aspects of PT we have prepared and characterized eleven monoclonal antibodies (mAbs) (UB-A1, UB-A2, UB-A10, UB-B7, UB-B12, UB-D4, UB-D7, UB-D10, UB-F7, UB-G1, and UB-G12) directed at the native toxin. Only UB-B12 and UB-D10 recognized PT in Western blotting indicating that most of the mAbs were directed against conformational epitopes. The mAbs were assayed for their ability to interfere with the binding of PT in model receptor systems like a solid phase binding assay using fetuin as receptor moiety, hemagglutination of chymotrypsin-sensitized goose erythrocytes, and the PT-mediated induction of the clustered growth pattern (CGP) of Chinese hamster ovary (CHO) cells. Five of the eleven mAbs (UB-A1, UB-A2, UB-B7, UB-B12, and UB-D7) interfered with the binding of PT to fetuin on solid phase and with PT-mediated hemagglutination. UB-A2, UB-B7, and UB-B12 also inhibited the induction of the clustered growth pattern of CHO-cells. This indicates that the determinants recognized by these mAbs are associated with the formation of the carbohydrate recognition sites of PT. Thus, the monoclonal antibodies described in this study will be valuable tools in the further analysis of the structure-function relationship of pertussis toxin with respect to receptor recognition and binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 14 (1982), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1574-695X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The development of novel approaches that allow accurate targeting of therapeutics to the intestinal mucosa is a major task in the research on intestinal inflammation. For the first time, a live genetically modified bacterial strain has been approved by Dutch authorities as a therapeutic agent for experimental therapy of intestinal bowel disease (IBD) in humans. Genetically modified probiotics can very well be used as carriers for localized antigen delivery into the intestine. Therapeutic safety, however, of such a carrier organism, is crucial, especially when a specific probiotic strain has to be used under diseased conditions. In this study, we tested the potential of Escherichia coli NISSLE 1917 to serve as a safe carrier for targeted delivery of recombinant proteins to the intestinal mucosa. In a well-defined and very sensitive immunological system, we demonstrate that intestinal recombinant E. coli NISSLE 1917 has no effect on migration, clonal expansion and activation status of specific CD4+ T cells, neither in healthy mice nor in animals with acute colitis. Furthermore, recombinant E. coli NISSLE 1917 has no effect on the induction or breakdown of peripheral T-cell tolerance in an autoimmune environment. The excellent colonization properties of E. coli NISSLE 1917 render this strain an ideal candidate as carrier organism for gut-focused in situ synthesis of therapeutic molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 45 (2002), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In recent years, accumulating evidence for glycosylated bacterial proteins has overthrown an almost dogmatic belief that prokaryotes are not able to synthesize glycoproteins. Now it is widely accepted that eubacteria express glycoproteins. Although, at present, detailed information about glycosylation and structure–function relationships is available for only few eubacterial proteins, the variety of different components and structures observed already indicates that the variations in bacterial glycoproteins seem to exceed the rather limited display found in eukaryotes. Numerous virulence factors of bacterial pathogens have been found to be covalently modified with carbohydrate residues, thereby identifying these factors as true glycoproteins. In several bacterial species, gene clusters suggested to represent a general pro-tein glycosylation system have been identified. In other cases, genes encoding highly specific glycosyltransferases have been found to be directly linked with virulence genes. These findings raise interesting questions concerning a potential role of glycosylation in pathogenesis. In this review, we will therefore focus on protein glycosylation in Gram-negative bacterial pathogens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Molecular microbiology 40 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The diffuse adherence of Escherichia coli strain 2787 (O126:H27) is mediated by the autotransporter adhesin AIDA-I (adhesin-involved-in-diffuse-adherence) encoded by the plasmid-borne aidA gene. AIDA-I exhibits an aberrant mobility in denaturing gel electrophoresis. Deletion of the open reading frame (ORF) A immediately upstream of aidA restores the predicted mobility of AIDA-I, but the adhesin is no longer functional. This indicates that the mature AIDA-I adhesin is post-translationally modified and the modification is essential for adherence function. Labelling with digoxigenin hydrazide shows AIDA-I to be glycosylated. Using carbohydrate composition analysis, AIDA-I contains exclusively heptose residues (ratio heptose:AIDA-I ≈19:1). The deduced amino acid sequence of the cytoplasmic open reading frame (ORF) A gene product shows homologies to heptosyltransferases. In addition, the modification was completely abolished in an ADP–glycero-manno-heptopyranose mutant. Our results provide direct evidence for glycosylation of the AIDA-I adhesin by heptoses with the ORF A gene product as a specific (mono)heptosyltransferase generating the functional mature AIDA-I adhesin. Consequently, the ORF A gene has been denoted ‘aah’ (autotransporter-adhesin-heptosyltransferase). Glycosylation by heptoses represents a novel protein modification in eubacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 22 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The AIDA-I adhesin known to be responsible for the diffuse adherence (DA) phenotype of the diarrhoea-genie Escherichia coli (DAEC) strain 2787 has been shown previously to be synthesized as a precursor protein and to undergo additional C-terminal processing. Here, the C-terminal processing of the AIDA-I precursor and the outer membrane topology of the cleaved C-terminal fragment, AIDAC, were investigated. By isolation of the cleaved AIDAC fragment and N-terminal sequencing, the C-terminal cleavage site was identified between Ser-846 and Ala-847 thereby indicating a molecular mass of 47.5 kDa for AIDAC. The correct processing to AIDA-I and AIDAC in OmpT, OmpP and DegP protease-deficient E. coli strains as well as in avirulent salmonellae and shigellae points to an autocatalytic cleavage mechanism. The cleaved AIDAC was localized in the outer membrane. A leader sequence-AIDAC fusion was efficiently routed to the outer membrane. Analysis by protease digestion, secondary-structure prediction and modelling, by comparison with structurally related bacterial proteins like the lgA1 protease from neisseria, the vacuolating toxin from Helicobacter pylori, and the VirG protein of Shigella flexneri, strongly indicates that AIDAC is present in the outer membrane as a β-barrel structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The adherence mechanisms of enteropathogenic Escherichia coli (EPEC) to epithelial cells are still not understood. To study the molecular basis of the diffuse adherence (DA) phenotype exhibited by diarrhoeagenic E. coli expressing classical EPEC serotypes we investigated strain 2787 (O126:H27) isolated from a case of infantile diarrhoea. A 6.0 kb plasmid-derrved DNA fragment mediates the DA phenotype and encodes the 100 kDa adhesin protein AIDA-I (adhesin involved in diffuse adherence). Sequencing of the entire fragment revealed two open reading frames which encoded proteins of 45 kDa and 132 kDa, respectively. The 132 kDa protein has been identified as an AIDA-I precursor protein. After cleavage of the signal sequence further processing at the C-terminus of the 132 kDa precursor leads to the mature ∼100 kDa AIDA-I. While the exact function of the cytopiasmic 45 kDa protein is not known, preliminary evidence indicates that it is necessary for the correct maturation of AIDA-I. The AIDA-l precursor exhibits significant homology with the virG(icsA) protein of Shigella flexneri which seems to be involved in the intercellular spread of invasive Shigella organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 31 (1999), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Diffusely adhering Escherichia coli (DAEC) strains have been implicated in epidemiological studies as a cause of diarrhoea in children. However, the molecular interactions of these pathogens with target cells have remained largely obscure. We found that some DAEC strains contain homologues of the locus of enterocyte effacement (LEE) pathogenicity island and secrete EspA, EspB and EspD proteins necessary for the formation of the attaching and effacing (A/E) lesions. To characterize the function of the EspD protein further, we cloned and sequenced the espD genes of two DA-EPEC strains and compared their deduced amino-acid sequences with known EspD sequences. A pattern of two conserved transmembrane regions and one conserved coiled-coil region is predicted in EspD and also in the type III system secreted proteins YopB, PopB, IpaB and SipB of Yersinia, Pseudomonas, Shigella and Salmonella respectively. The EspD protein is inserted into a trypsin-sensitive location in the HeLa cell membrane at sites of bacterial contact, but is not translocated into the cytoplasm. Secretion of EspD increases upon contact with host cells. We propose that the membrane-located EspD protein is part of the translocation apparatus for Esp proteins into the target host cell performing functions similar to YopB in Yersinia.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...