ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    Berlin [u.a.] : Springer
    Call number: O 4980
    Type of Medium: Monograph available for loan
    Pages: VIII, 262 S. : graph. Darst.
    ISBN: 3540087273
    Series Statement: Hochschultext
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    InTechOpen | The Delivery of Nanoparticles | The Delivery of Nanoparticles
    Publication Date: 2024-04-04
    Description: Drug delivery systems traditionally relied on passive diffusion mechanisms for targeting and releasing of therapeutically active molecules. The major problems associated with traditional delivery are poor specificity and dose-limited toxicity. Nanoparticles have found applicability in the development of novel drug delivery systems by easily overcoming toxicity problem. However, specificity of delivery has remained as a challenge. Developments in the methods of reaching to targeted tissue have lead to new and improved drug delivery platforms. Recently, active targeting has been incorporated by cell specific ligands such as antibodies, lectins, growth factor receptors. More recently, aptamers gained popularity in construction of novel actively targeted drug delivery systems (Ozalp et al., 2011). Considerable proportions of aptamer-based delivery systems have been incorporated to a variety of nanomaterials in order to improve their specific targeting properties (Chen et al., 2011; Zhou et al., 2011).
    Keywords: drug delivery ; nanoparticles ; drug delivery ; nanoparticles ; Aptamer ; Protein ; thema EDItEUR::P Mathematics and Science::PD Science: general issues
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 155 (1991), S. 366-377 
    ISSN: 1432-072X
    Keywords: Pyrococcus furiosus ; Hyperthermophilic archabacteria ; Pyruvate fermentation ; Growth yields ; Hydrogen inhibition ; Sulfur stimulation ; Pyruvate:ferredoxin oxidoreductase ; Acetyl-CoA synthetase (ADP forming) ; Adenylate kinase ; ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The hyperthermophilic anaerobe Pyrococcus furiosus was found to grow on pyruvate as energy and carbon source. Growth was dependent on yeast extract (0.1%). The organism grew with doublings times of about 1 h up to cell densities of 1–2×108 cells/ml. During growth 0.6–0.8 mol acetate and 1.2–1.5 mol CO2 and 0.8 mol H2 were formed per mol of pyruvate consumed. The molar growth yield was 10–11 g cells(dry weight)/mol pyruvate. Cell suspensions catalyzed the conversion of 1 mol of pyruvate to 0.6–0.8 mol acetate, 1.2–1.5 mol CO2, 1.2 mol H2 and 0.03 mol acetoin. After fermentation of [3-14C]pyruvate the specific radioactivities of pyruvate, CO2 and acetate were equal to 1:0.01:1. Cellfree extracts contained the following enzymatic activities: pyruvate: ferredoxin (methyl viologen) oxidoreductase (0.2 U mg-1, T=60°C, with Clostridium pasteurianum ferredoxin as electron acceptor; 1.4 U mg-1 at 90°C, with methyl viologen as electron acceptor); acetyl-CoA synthetase (ADP forming) [acetyl-CoA+ADP+Pi⇆acetate+ATP+CoA] (0.34 U mg-1, T=90°C), and hydrogen: methyl viologen oxidoreductase (1.75 U mg-1). Phosphate acetyl-transferase activity, acetate kinase activity, and carbon monoxide:methyl viologen oxidoreductase activity could not be detected. These findings indicate that the archaebacterium P. furiosus ferments pyruvate to acetate, CO2 and H2 involving only three enzymes, a pyruvate:ferredoxin oxidoreductase, a hydrogenase and an acetyl-CoA synthetase (ADP forming).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-072X
    Keywords: Pyrococcus furiosus ; Hyperthermophiles ; Sugar fermentation ; Non-phosphorylated Entner ; Doudoroff pathway ; 2-Keto-3-deoxy-gluconate aldolase ; Glyceraldehyde dehydrogenase ; 2-Phosphoglycerate-forming glycerate kinase ; ADP-depenent acetyl-CoA synthetase ; Substrate level phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The hyperthermophilic anaerobe Pyrococcus furiosus was grown on maltose as energy and carbon source. During growth 1 mol maltose was fermented to 3–4 mol acetate, 6–7 mol H2 and 3–4 mol CO2. The presence of the following enzyme activities in cell extracts of maltose-grown P. furiosus indicate that the sugar is degraded to pyruvate and H2 by a modified “non-phosphorylated” Entner-Doudoroff-pathway (the values given in brackets are specific enzyme activities at 100 °C): Glucose: methyl viologen oxidoreductase (0.03 U/mg); 2-keto-3-deoxy-gluconate aldolase (0.03 U/mg); glyceraldehyde: benzyl viologen oxidoreductase (2.6 U/mg), glycerate kinase (2-phosphoglycerate forming) (0.48 U/mg), enolase (10.4 U/mg), pyruvate kinase (1.4 U/mg). Hexokinase, glucose-6-phosphate dehydrogenase, 2-keto-3-deoxy-6-phosphogluconate aldolase and phosphofructokinase could not be detected. Further conversion of pyruvate to acetate, CO2 and H2 involves pyruvate: ferredoxin oxidoreductase (0.4 U/mg; T=60°C with Clostridium pasteurianum ferredoxin as electron acceptor), hydrogen: methyl viologen ixodoreductase (3.4 U/mg) and ADP-dependent acetyl-CoA synthetase (1.9 U/mg). Phosphate acetyl transferase and acetate kinase could not be detected. The ADP-dependent acetyl-CoA synthetase catalyzes ATP synthesis via the mechanism of substrate level phosphorylation and apparently constitutes the only ATP conserving site during maltose catabolism in P. furiosus. This novel pathway of maltose fermentation to acetate, CO2 and H2 in the anaerobic archaeon P. furiosus may represent a phylogenetically ancient pathway of sugar fermentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-072X
    Keywords: Archaea ; Bacteria ; Hyperthermophiles ; Acetate formation ; Pyruvate: ferredoxin oxidoreductase ; Acetyl-CoA synthetase (ADP forming) ; Phosphate acetyltransferase ; Acetate kinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The anaerobic hyperthermophilic archaea Desulfurococcus amylolyticus, Hyperthermus butylicus, Thermococcus celer, Pyrococcus woesei, the hyperthermophilic bacteria Thermotoga maritima and Clostridium thermohydrosulfuricum and the aerobic mesophilic archaeon Halobacterium saccharovorum were grown either on complex media, on sugars or on pyruvate as carbon and energy sources. During growth acetate was formed as fermentation product by all organisms. The enzymes involved in acetyl-CoA formation from pyruvate and in acetate formation from acetyl-CoA were investigated: 1. Cell extracts of all species, both archaea and bacteria, catalyzed the coenzyme A-dependent oxidative decarboxylation of pyruvate with viologen dyes or with Clostridium pasteurianum ferredoxin as electron acceptors indicating a pyruvate: ferredoxin oxidoreductase to be operative in acetyl-CoA formation from pyruvate. 2. Cell extracts of all archaeal species, both hyperthermophiles (D. amylolyticus, H. butylicus, T. celer, P. woesei) and the mesophile H. saccharovorum, contained an acetyl-CoA synthetase (ADP forming), which catalyzes both acetate formation from acetyl-CoA and ATP synthesis from ADP and phosphate (Pi): Acetyl-CoA+ADP+Pi⇌Acetate + ATP+CoA. Phosphate acetyltransferase and acetate kinase could not be detected. 3. Cell extracts of the hyperthermophilic (eu)bacteria T. maritima and C. thermohydrosulfuricum contained phosphate acetyltransferase and acetate kinase rather than acetyl-CoA synthetase (ADP forming). These data indicate that acetyl-CoA synthetase (ADP forming) represents a typical archaeal property rather than an enzyme specific for hyperthermophiles. It is proposed that in all acetate forming archaea the formation of acetate and of ATP from acetyl-CoA, ADP and Pi are catalyzed by acetyl-CoA synthetase (ADP forming), whereas in all acetate forming (eu)bacteria these reactions are catalyzed by two enzymes, phosphate acetyltransferase and acetate kinase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Pyrococcus furiosus ; Archaea ; Hyperthermophiles ; Gluconeogenesis ; Embden-Meyerhof pathway ; Fructose-1,6-bisphosphate aldolase ; Fructose-1,6-bisphosphate phosphatase ; Glyceraldehyde-3-phosphate dehydrogenase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase. Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme. Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified “non-phosphorylated” Entner-Doudoroff pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Menasha, Wis. : Periodicals Archive Online (PAO)
    The Accounting Review. 64:2 (1989:Apr.) 313 
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Menasha, Wis. : Periodicals Archive Online (PAO)
    The Accounting Review. 68:1 (1993:Jan.) 151 
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Suspensions of maltose-grown cells of the hyperthermophilic archaeon Pyrococcus furiosus, when incubated at 90°C with 35 mM [1-13C]glucose or [3-13C]glucose, consumed glucose at a rate of about 10 nmol min−1 (mg protein)−1. Acetate (10 mM), alanine (3 mM), CO2 and H2 were the fermentation products. The 13C-labelling pattern in alamine and acetate were analyzed. With [1-13C]glucose the methyl group of both alanine and acetate was labelled; with [3-13C]glucose only the carboxyl group of alanine was labelled whereas acetate was unlabelled. Extracts of maltose-grown cells contained glucose isomerase (12.8 U mg−1, 100°C), ketohexokinase (0.23 U mg−1, 100°C), and fructose 1-phosphate aldolase (0.06 U mg−1, 100°C). Enzymes catalyzing the formation of fructose 1,6-bisphosphate from fructose 1-phosphate or fructose 6-phosphate could not be detected. As publihed previously by our group and other authors P. furiosus also contains enzymes of glyceraldehyde conversion to 2-phosphoglycerate according to a non-phosphorylated Entner-Doudoroff pathway, of dihydroxyacetone phosphate conversion to 2-phosphoglycerate according to the Embden-Meyerhof pathway, and of 2-phosphoglycerate conversion - via pyruvate - to acetate and alanine. Based on the enzyme activities in P. furiosus, the following pathway for glucose degradation to alanine and acetate in cell suspensions is proposed which can explain the [13C]glucose labelling data: glucose→fructose→fructose 1-phosphate→dihydroxyacetonephosphate+glyceraldehyde and further conversion of both trioses to alanine and acetate via pyruvate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Dordrecht : Periodicals Archive Online (PAO)
    Journal of Business Ethics. 3:4 (1984:Nov.) 269 
    ISSN: 0167-4544
    Topics: Philosophy , Economics
    Notes: Papers presented at the 16th Conference on Value Inquiry, entitled: 'Ethics and the Market Place: An Exercise in Bridge-Building or On the Slopes of the Interface'
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...