ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-27
    Description: Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 1890, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible, and it was postulated that this process could occur under conditions selecting for species with lower growth rates but higher growth yields than canonical ammonia-oxidizing microorganisms. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Kessel, Maartje A H J -- Speth, Daan R -- Albertsen, Mads -- Nielsen, Per H -- Op den Camp, Huub J M -- Kartal, Boran -- Jetten, Mike S M -- Lucker, Sebastian -- England -- Nature. 2015 Dec 24;528(7583):555-9. doi: 10.1038/nature16459. Epub 2015 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands. ; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark. ; Laboratory for Microbiology, University of Gent, K. L. Ledeganckstraat 35, 9000 Gent, Belgium. ; Department of Biotechnology, TU Delft, Julianalaan 67, 2628 BC Delft, the Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26610025" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonia/*metabolism ; Bacteria/enzymology/genetics/*metabolism ; Evolution, Molecular ; Genome, Bacterial/genetics ; Nitrates/*metabolism ; *Nitrification/genetics ; Nitrites/*metabolism ; Oxidation-Reduction ; Oxidoreductases/genetics/metabolism ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-08-30
    Description: The bacterial oxidation of nitrite to nitrate is a key process of the biogeochemical nitrogen cycle. Nitrite-oxidizing bacteria are considered a highly specialized functional group, which depends on the supply of nitrite from other microorganisms and whose distribution strictly correlates with nitrification in the environment and in wastewater treatment plants. On the basis of genomics, physiological experiments, and single-cell analyses, we show that Nitrospira moscoviensis, which represents a widely distributed lineage of nitrite-oxidizing bacteria, has the genetic inventory to utilize hydrogen (H2) as an alternative energy source for aerobic respiration and grows on H2 without nitrite. CO2 fixation occurred with H2 as the sole electron donor. Our results demonstrate a chemolithoautotrophic lifestyle of nitrite-oxidizing bacteria outside the nitrogen cycle, suggesting greater ecological flexibility than previously assumed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koch, Hanna -- Galushko, Alexander -- Albertsen, Mads -- Schintlmeister, Arno -- Gruber-Dorninger, Christiane -- Lucker, Sebastian -- Pelletier, Eric -- Le Paslier, Denis -- Spieck, Eva -- Richter, Andreas -- Nielsen, Per H -- Wagner, Michael -- Daims, Holger -- New York, N.Y. -- Science. 2014 Aug 29;345(6200):1052-4. doi: 10.1126/science.1256985.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria. ; Center for Microbial Communities, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, 9000 Aalborg, Denmark. ; Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria. Large Instrument Facility for Advanced Isotope Research, University of Vienna, 1090 Vienna, Austria. ; Commissariat a l'Energie Atomique, Direction des Sciences du Vivant, Institut de genomique, Genoscope, 91057 Evry, France. Centre National de la Recherche Scientifique, UMR8030, 91057 Evry, France. Universite d'Evry Val d'Essonne, 91057 Evry, France. ; Biozentrum Klein Flottbek, Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany. ; Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1090 Vienna, Austria. ; Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria. daims@microbial-ecology.net.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25170152" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Bacteria, Aerobic/genetics/*growth & development/*metabolism ; Chemoautotrophic Growth/genetics/*physiology ; Energy Metabolism ; Genetic Loci ; Hydrogen/*metabolism ; Hydrogenase/genetics ; Molecular Sequence Data ; Nitrates/metabolism ; Nitrification/genetics/physiology ; Nitrites/*metabolism ; *Nitrogen Cycle ; Oxidation-Reduction ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2015-09-09
    Description: Nitrospira are a diverse group of nitrite-oxidizing bacteria and among the environmentally most widespread nitrifiers. However, they remain scarcely studied and mostly uncultured. Based on genomic and experimental data from Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II, we identified ecophysiological traits that contribute to the ecological success of Nitrospira....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...