ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-06
    Description: Searches for transient astrophysical sources often reveal unexpected classes of objects that are useful physical laboratories. In a recent survey for pulsars and fast transients, we have uncovered four millisecond-duration radio transients all more than 40 degrees from the Galactic plane. The bursts' properties indicate that they are of celestial rather than terrestrial origin. Host galaxy and intergalactic medium models suggest that they have cosmological redshifts of 0.5 to 1 and distances of up to 3 gigaparsecs. No temporally coincident x- or gamma-ray signature was identified in association with the bursts. Characterization of the source population and identification of host galaxies offers an opportunity to determine the baryonic content of the universe.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thornton, D -- Stappers, B -- Bailes, M -- Barsdell, B -- Bates, S -- Bhat, N D R -- Burgay, M -- Burke-Spolaor, S -- Champion, D J -- Coster, P -- D'Amico, N -- Jameson, A -- Johnston, S -- Keith, M -- Kramer, M -- Levin, L -- Milia, S -- Ng, C -- Possenti, A -- van Straten, W -- New York, N.Y. -- Science. 2013 Jul 5;341(6141):53-6. doi: 10.1126/science.1236789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester, UK. thornton@jb.man.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828936" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-27
    Description: Millisecond pulsars are thought to be neutron stars that have been spun-up by accretion of matter from a binary companion. Although most are in binary systems, some 30% are solitary, and their origin is therefore mysterious. PSR J1719-1438, a 5.7-millisecond pulsar, was detected in a recent survey with the Parkes 64-meter radio telescope. We show that this pulsar is in a binary system with an orbital period of 2.2 hours. The mass of its companion is near that of Jupiter, but its minimum density of 23 grams per cubic centimeter suggests that it may be an ultralow-mass carbon white dwarf. This system may thus have once been an ultracompact low-mass x-ray binary, where the companion narrowly avoided complete destruction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bailes, M -- Bates, S D -- Bhalerao, V -- Bhat, N D R -- Burgay, M -- Burke-Spolaor, S -- D'Amico, N -- Johnston, S -- Keith, M J -- Kramer, M -- Kulkarni, S R -- Levin, L -- Lyne, A G -- Milia, S -- Possenti, A -- Spitler, L -- Stappers, B -- van Straten, W -- New York, N.Y. -- Science. 2011 Sep 23;333(6050):1717-20. doi: 10.1126/science.1208890. Epub 2011 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Astrophysics and Supercomputing and ARC Centre for All-Sky Astrophysics (CAASTRO), Swinburne University of Technology, Post Office Box 218 Hawthorn, VIC 3122, Australia. mbailes@swin.edu.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21868629" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-19
    Description: The formation and growth processes of supermassive black holes (SMBHs) are not well constrained. SMBH population models, however, provide specific predictions for the properties of the gravitational-wave background (GWB) from binary SMBHs in merging galaxies throughout the universe. Using observations from the Parkes Pulsar Timing Array, we constrain the fractional GWB energy density (Omega(GW)) with 95% confidence to be Omega(GW)(H0/73 kilometers per second per megaparsec)(2) 〈 1.3 x 10(-9) (where H0 is the Hubble constant) at a frequency of 2.8 nanohertz, which is approximately a factor of 6 more stringent than previous limits. We compare our limit to models of the SMBH population and find inconsistencies at confidence levels between 46 and 91%. For example, the standard galaxy formation model implemented in the Millennium Simulation Project is inconsistent with our limit with 50% probability.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shannon, R M -- Ravi, V -- Coles, W A -- Hobbs, G -- Keith, M J -- Manchester, R N -- Wyithe, J S B -- Bailes, M -- Bhat, N D R -- Burke-Spolaor, S -- Khoo, J -- Levin, Y -- Oslowski, S -- Sarkissian, J M -- van Straten, W -- Verbiest, J P W -- Wang, J-B -- New York, N.Y. -- Science. 2013 Oct 18;342(6156):334-7. doi: 10.1126/science.1238012.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commonwealth Scientific and Industrial Research Organisation (CSIRO) Astronomy and Space Science, Australia Telescope National Facility, Post Office Box 76, Epping, New South Wales 1710, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24136962" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-26
    Description: Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be 〈1.0 x 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shannon, R M -- Ravi, V -- Lentati, L T -- Lasky, P D -- Hobbs, G -- Kerr, M -- Manchester, R N -- Coles, W A -- Levin, Y -- Bailes, M -- Bhat, N D R -- Burke-Spolaor, S -- Dai, S -- Keith, M J -- Oslowski, S -- Reardon, D J -- van Straten, W -- Toomey, L -- Wang, J-B -- Wen, L -- Wyithe, J S B -- Zhu, X-J -- New York, N.Y. -- Science. 2015 Sep 25;349(6255):1522-5. doi: 10.1126/science.aab1910.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commonwealth Science and Industrial Research Organization (CSIRO) Astronomy and Space Science, Australia Telescope National Facility, Post Office Box 76, Epping, New South Wales 1710, Australia. International Centre for Radio Astronomy Research, Curtin University, Bentley, Western Australia 6102, Australia. ; Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Post Office Box 218, Hawthorn, Victoria 3122, Australia. ; Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK. ; Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Post Office Box 27, Victoria 3800, Australia. ; Commonwealth Science and Industrial Research Organization (CSIRO) Astronomy and Space Science, Australia Telescope National Facility, Post Office Box 76, Epping, New South Wales 1710, Australia. ; Department of Electrical and Computer Engineering, University of California-San Diego, La Jolla, CA 92093, USA. ; International Centre for Radio Astronomy Research, Curtin University, Bentley, Western Australia 6102, Australia. ; National Radio Astronomical Observatory, Array Operations Center, Post Office Box O, Socorro, NM 87801-0387, USA. ; Commonwealth Science and Industrial Research Organization (CSIRO) Astronomy and Space Science, Australia Telescope National Facility, Post Office Box 76, Epping, New South Wales 1710, Australia. Department of Astronomy, School of Physics, Peking University, Beijing 100871, China. ; Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester M13 9PL, UK. ; Department of Physics, Universitat Bielefeld, Universitatsstrasse 25, D-33615 Bielefeld, Germany. Max-Planck-Institut fur Radioastronomie, Auf dem Hugel 69, 53121 Bonn, Germany. ; Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1-Street, Urumqi, Xinjiang 830011, China. ; School of Physics, University of Western Australia, Crawley, Western Australia 6009, Australia. ; School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26404832" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-26
    Description: In recent years, millisecond-duration radio signals originating in distant galaxies appear to have been discovered in the so-called fast radio bursts. These signals are dispersed according to a precise physical law and this dispersion is a key observable quantity, which, in tandem with a redshift measurement, can be used for fundamental physical investigations. Every fast radio burst has a dispersion measurement, but none before now have had a redshift measurement, because of the difficulty in pinpointing their celestial coordinates. Here we report the discovery of a fast radio burst and the identification of a fading radio transient lasting ~6 days after the event, which we use to identify the host galaxy; we measure the galaxy's redshift to be z = 0.492 +/- 0.008. The dispersion measure and redshift, in combination, provide a direct measurement of the cosmic density of ionized baryons in the intergalactic medium of OmegaIGM = 4.9 +/- 1.3 per cent, in agreement with the expectation from the Wilkinson Microwave Anisotropy Probe, and including all of the so-called 'missing baryons'. The ~6-day radio transient is largely consistent with the radio afterglow of a short gamma-ray burst, and its existence and timescale do not support progenitor models such as giant pulses from pulsars, and supernovae. This contrasts with the interpretation of another recently discovered fast radio burst, suggesting that there are at least two classes of bursts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keane, E F -- Johnston, S -- Bhandari, S -- Barr, E -- Bhat, N D R -- Burgay, M -- Caleb, M -- Flynn, C -- Jameson, A -- Kramer, M -- Petroff, E -- Possenti, A -- van Straten, W -- Bailes, M -- Burke-Spolaor, S -- Eatough, R P -- Stappers, B W -- Totani, T -- Honma, M -- Furusawa, H -- Hattori, T -- Morokuma, T -- Niino, Y -- Sugai, H -- Terai, T -- Tominaga, N -- Yamasaki, S -- Yasuda, N -- Allen, R -- Cooke, J -- Jencson, J -- Kasliwal, M M -- Kaplan, D L -- Tingay, S J -- Williams, A -- Wayth, R -- Chandra, P -- Perrodin, D -- Berezina, M -- Mickaliger, M -- Bassa, C -- England -- Nature. 2016 Feb 25;530(7591):453-6. doi: 10.1038/nature17140.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Square Kilometre Array Organisation, Jodrell Bank Observatory, SK11 9DL, UK. ; Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Mail H29, PO Box 218, Victoria 3122, Australia. ; Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), Australia. ; Commonwealth Science and Industrial Research Organisation (CSIRO), Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, New South Wales 1710, Australia. ; International Centre for Radio Astronomy Research, Curtin University, Bentley, Western Australia 6102, Australia. ; Instituto Nazionale di Astrofisica (INAF)-Osservatorio Astronomico di Cagliari, Via della Scienza 5, I-09047 Selargius (CA), Italy. ; Research School of Astronomy and Astrophysics, Australian National University, Canberra, Australian Capital Territory 2611, Australia. ; Max-Planck-Institut fur Radioastronomie (MPIfR), Auf dem Hugel 69, D-53121 Bonn, Germany. ; Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK. ; National Radio Astronomy Observatory, Socorro, New Mexico, USA. ; Department of Astronomy, the University of Tokyo, Hongo, Tokyo 113-0033, Japan. ; National Astronomical Observatory of Japan, 2 Chome-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan. ; Department of Astronomical Science, SOKENDAI (Graduate University for the Advanced Study), Osawa, Mitaka 181-8588, Japan. ; Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, Hawaii 96720, USA. ; Institute of Astronomy, Graduate School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan. ; Kavli Institute for the Physics and Mathematics of the Universe (WPI), Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583, Japan. ; Department of Physics, Faculty of Science and Engineering, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501, Japan. ; Cahill Center for Astrophysics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. ; Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA. ; National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University Campus, Ganeshkhind, Pune 411 007, India. ; ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26911781" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-05
    Description: A direct localization of a fast radio burst and its host Nature 541, 7635 (2017). doi:10.1038/nature20797 Authors: S. Chatterjee, C. J. Law, R. S. Wharton, S. Burke-Spolaor, J. W. T. Hessels, G. C. Bower, J. M. Cordes, S. P. Tendulkar, C. G. Bassa, P. Demorest, B. J. Butler, A. Seymour, P. Scholz, M. W. Abruzzo, S. Bogdanov, V. M. Kaspi, A. Keimpema, T. J. W. Lazio, B. Marcote, M. A. McLaughlin, Z. Paragi, S. M. Ransom, M. Rupen, L. G. Spitler & H. J. van Langevelde Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that direct subarcsecond localizations may be the only way to provide reliable associations.
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-11-20
    Description: We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024–0719, J1045–4509, J1600–3053, J1603–7202, and J1730–2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437–4715 and J1909–3744 with M p = 1.44 ± 0.07 and 1.47 ± 0.03 M , respectively. The improved orbital period-derivative measurement for PSR J0437–4715 results in a derived distance measurement at the 0.16 per cent level of precision, D = 156.79 ± 0.25 pc, one of the most fractionally precise distance measurements of any star to date.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-05-13
    Description: We present initial results from the low-latitude Galactic plane region of the High Time Resolution Universe pulsar survey conducted at the Parkes 64-m radio telescope. We discuss the computational challenges arising from the processing of the terabyte-sized survey data. Two new radio interference mitigation techniques are introduced, as well as a partially coherent segmented acceleration search algorithm which aims to increase our chances of discovering highly relativistic short-orbit binary systems, covering a parameter space including potential pulsar–black hole binaries. We show that under a constant acceleration approximation, a ratio of data length over orbital period of 0.1 results in the highest effectiveness for this search algorithm. From the 50 per cent of data processed thus far, we have redetected 435 previously known pulsars and discovered a further 60 pulsars, two of which are fast-spinning pulsars with periods less than 30 ms. PSR J1101–6424 is a millisecond pulsar whose heavy white dwarf (WD) companion and short spin period of 5.1 ms indicate a rare example of full-recycling via Case A Roche lobe overflow. PSR J1757–27 appears to be an isolated recycled pulsar with a relatively long spin period of 17 ms. In addition, PSR J1244–6359 is a mildly recycled binary system with a heavy WD companion, PSR J1755–25 has a significant orbital eccentricity of 0.09 and PSR J1759–24 is likely to be a long-orbit eclipsing binary with orbital period of the order of tens of years. Comparison of our newly discovered pulsar sample to the known population suggests that they belong to an older population. Furthermore, we demonstrate that our current pulsar detection yield is as expected from population synthesis.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-04-10
    Description: We present high signal-to-noise ratio, multifrequency polarization pulse profiles for 24 millisecond pulsars that are being observed as part of the Parkes Pulsar Timing Array project. The pulsars are observed in three bands, centred close to 730, 1400 and 3100 MHz, using a dual-band 10 cm/50 cm receiver and the central beam of the 20-cm multibeam receiver. Observations spanning approximately six years have been carefully calibrated and summed to produce high S/N profiles. This allows us to study the individual profile components and in particular how they evolve with frequency. We also identify previously undetected profile features. For many pulsars we show that pulsed emission extends across almost the entire pulse profile. The pulse component widths and component separations follow a complex evolution with frequency; in some cases these parameters increase and in other cases they decrease with increasing frequency. The evolution with frequency of the polarization properties of the profile is also non-trivial. We provide evidence that the pre- and post-cursors generally have higher fractional linear polarization than the main pulse. We have obtained the spectral index and rotation measure for each pulsar by fitting across all three observing bands. For the majority of pulsars, the spectra follow a single power-law and the position angles follow a 2 relation, as expected. However, clear deviations are seen for some pulsars. We also present phase-resolved measurements of the spectral index, fractional linear polarization and rotation measure. All these properties are shown to vary systematically over the pulse profile.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-23
    Description: We analyse the stochastic properties of the 49 pulsars that comprise the first International Pulsar Timing Array (IPTA) data release. We use Bayesian methodology, performing model selection to determine the optimal description of the stochastic signals present in each pulsar. In addition to spin-noise and dispersion-measure (DM) variations, these models can include timing noise unique to a single observing system, or frequency band. We show the improved radio-frequency coverage and presence of overlapping data from different observing systems in the IPTA data set enables us to separate both system and band-dependent effects with much greater efficacy than in the individual pulsar timing array (PTA) data sets. For example, we show that PSR J1643–1224 has, in addition to DM variations, significant band-dependent noise that is coherent between PTAs which we interpret as coming from time-variable scattering or refraction in the ionized interstellar medium. Failing to model these different contributions appropriately can dramatically alter the astrophysical interpretation of the stochastic signals observed in the residuals. In some cases, the spectral exponent of the spin-noise signal can vary from 1.6 to 4 depending upon the model, which has direct implications for the long-term sensitivity of the pulsar to a stochastic gravitational-wave (GW) background. By using a more appropriate model, however, we can greatly improve a pulsar's sensitivity to GWs. For example, including system and band-dependent signals in the PSR J0437–4715 data set improves the upper limit on a fiducial GW background by ~60 per cent compared to a model that includes DM variations and spin-noise only.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...