ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Call number: S 90.0002(1661-C)
    In: Professional paper
    Description / Table of Contents: Earthquakes pose a serious hazard for urban areas of the Pacific Northwest. Marine geophysical data probe earthquake source regions and can help spur preparedness for possible major disasters.
    Type of Medium: Series available for loan
    Pages: iv, 28 S. + 3 Kt.-Beil.
    ISBN: 1411306732
    Series Statement: U.S. Geological Survey professional paper 1661-C
    Classification:
    B..
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004
    Keywords: Seismology ; Earthquake ; Moment tensor ; Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Geodesy ; Source ; Fault plane solution, focal mechanism ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-20
    Description: Great earthquakes anticipated on the Cascadia subduction fault can potentially rupture beyond the geodetically and thermally inferred locked zone to the depths of episodic tremor and slip (ETS) or to the even deeper forearc mantle corner (FMC). To evaluate these extreme rupture limits, we map the FMC from southern Vancouver Island to central Oregon by combining published seismic velocity structures with a model of the Juan de Fuca plate. These data indicate that the FMC is somewhat shallower beneath Vancouver Island (36–38 km) and Oregon (35–40 km) and deeper beneath Washington (41–43 km). The updip edge of tremor follows the same general pattern, overlying a slightly shallower Juan de Fuca plate beneath Vancouver Island and Oregon (˜30 km) and a deeper plate beneath Washington (˜35 km). Similar to the Nankai subduction zone, the best constrained FMC depths correlate with the center of the tremor band suggesting that ETS is controlled by conditions near the FMC rather than directly by temperature or pressure. Unlike Nankai, a gap as wide as 70 km exists between the downdip limit of the inferred locked zone and the FMC. This gap also encompasses a ˜50 km wide gap between the inferred locked zones and the updip limit of tremor. The separation of these features offers a natural laboratory for determining the key controls on downdip rupture limits.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Abstract This article presents evidence that the high temperatures responsible for much regional metamorphism, the Barrovian sequence, occurs in subduction zone backarcs prior to and not, as commonly inferred, as a consequence of heating during continental collision orogeny. This conclusion follows from the recent recognition that most current subduction zones have 200‐ to 1,000‐km wide backarcs that are uniformly hot. They have Barrovian metamorphism vertical temperature gradients that extrapolate to 800–850 °C at a 35‐km Moho, in contrast to ~450 °C for normal stable crust. This explanation overcomes several difficulties of previous explanations. Collisional crustal shortening and thickening as in Himalaya‐Tibet should reduce the vertical gradient by up to a factor of 2, so the high metamorphic temperatures, if associated with crustal shortening, require an increase in gradient of up to a factor of 4 starting from a stable cool continent. Mechanisms previously suggested for the heat, underthrusting of near‐surface radioactive heat generation, ductile/frictional heating, igneous activity, and deformation‐induced lithosphere thinning, have difficulty producing such large heating. They also are not consistent with evidence that some regional metamorphism is syntectonic or predates deformation and that a cool lithosphere is too strong to deform from plate boundary forces. I suggest that the high temperatures of regional metamorphism initiate in the hot backarc prior to deformation events. Multiple phases of metamorphism also may result from uplift during complex ongoing hot backarc deformation. In this interpretation, orogenic deformation is responsible for bringing the previously existing high‐temperature rocks to the surface, not for the metamorphism itself.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] At the northern Cascadia margin, the Juan de Fuca plate is underthrusting North America at about 45 mm yr-1 (ref. 1), resulting in the potential for destructive great earthquakes. The downdip extent of coupling between the two plates is difficult to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 110 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Previous studies have shown that up to a few per cent porosity filled with saline fluid in the lower crust can explain many of the regions with: (1) low electrical resistivities, (2) velocities that appear to be too low for the otherwise inferred mafic composition, and (3) strong lower crustal reflectivity. Several predictions of the free porosity model are examined in this article. A compilation of approximately coincident magnetotelluric electrical resistivity and refraction seismic velocity data for the lower continental crust is presented to test the predicted correlation. In spite of the limited geographically coincident data and the difficulties of ensuring accurate depth coincidence and of anisotropy effects, there is a general trend of decreasing velocity with decreasing resistivity. The data are scattered, but most fall between the reasonable bounds provided by pore geometry models with effective aspect ratio (for velocity) and Archie's Law pore tortuosity exponent (for resistivity) pairs of 0.03:2.0 and 0.1: 1.5 respectively. As in previous compilations, shield areas tend to have both higher resistivities and higher velocities in the lower crust compared to Phanerozoic areas, although there is overlap for both parameters. A general correlation is also found between the top of low resistivity layers and the top of lower crustal reflective zones with the 400-450°C isotherms. Possible explanations of this correlation with temperature include (1) an association with the brittle-ductile transition, below which pore geometries are such as to hold fluid in the required configuration, and (2) control provided by metamorphic reactions that restrict free fluid to below this depth. To constrain better the pore geometry, a compilation of the limited data on lower crustal Poisson's ratio shows most values ∼0.28. This is consistent with a mainly mafic composition with up to several per cent porosity. Reasonable pore geometry distributions predict a small decrease or constant Poisson's ratio with increasing porosity. While each of the three lower crustal geophysical data types have other reasonable explanations, the apparent correlations above provide support for the fluid-filled pores in the lower crust. The problems of the low permeability required to keep fluid in the lower crust, and of pore fluid consumption in retrograde metamorphic reactions during cooling are discussed briefly. Two mechanisms are suggested as means of producing a low-permeability cap in the middle to deep crust: one invokes deformation of textural equilibrium pore geometries by small deviatoric stresses, the other lower crustal shear processes. There remains some difficulty in reconciling free aqueous fluids in the lower crust with the expected retrograde metamorphism that should take up water into hydrated mineral assemblages.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 120 (1995), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Processing and interpretation of magnetotelluric data, recorded as part of the LITHOPROBE Southern Cordillera transect studies, across the boundary of the Intermontane and Omineca morphogeological belts reveals: (a) high electrical conductivity in the middle and lower parts of the crust everywhere, and (b) a depth dependency of geoelectric strike. The data have been modelled using two different inversion algorithms and different methods for correcting ‘static shifts’. The two different approaches gave similar results: the depth to the top of a conductive layer decreases from 15-17 km in the west across the Intermontane Belt to 8-10 km across the transition to the Omineca Belt. The top of this conductive layer is closely coincident with a layer of increased seismic reflectivity as shown by reprocessing of collocated LITHOPROBE seismic-reflection data. The eastward shallowing is associated with an increase in heat flow such that the top of the conductive and reflective zones remains at 400-450°C. This coincidence suggests that the increased reflectivity and the high electrical conductivity observed in the middle crust may have a common cause, and that their presence is limited to where the present temperature exceeds a critical value. One explanation that meets these conditions is that both the conductivity and reflectivity are produced by a small amount of aqueous fluid porosity. We propose that fluids are trapped in the middle crust by a ductile shear zone, previously interpreted from the seismic sections as the Okanagan Valley Fault to the west of Okanagan lake. The geoelectrical strike varies from N25°W for the first 5-10 km of the crust, to N20°E for the middle/lower crust, and to N60°E for the upper mantle. This variation indicates that the exotic terrane material is concentrated in the uppermost part of the crust and that the remainder of the crust is composed of ancestral North American rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Riedel, M., Rohr, K. M. M., Spence, G. D., Kelley, D., Delaney, J., Lapham, L., Pohlman, J. W., Hyndman, R. D., & Willoughby, E. C. Focused fluid flow along the Nootka fault zone and continental slope, explorer-Juan de Fuca Plate Boundary. Geochemistry Geophysics Geosystems, 21(8), (2020): e2020GC009095, doi:10.1029/2020GC009095.
    Description: Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from 〉20 years of investigations to demonstrate the nature of fluid‐flow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to near‐seafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100–300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show opposite‐to‐seafloor reflection polarity, and are associated with frequency reduction and velocity push‐down indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, nonconformable high‐amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottom‐video observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios 〈500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate‐related bottom‐simulating reflectors are widespread and occur at depths indicating heat flow values of 80–90 mW/m2.
    Description: This study represents data from numerous cruises acquired over more than two decades. We would like to thank all the scientific personnel and technical staff involved in data acquisition, processing of samples, and making observations during the ROV dives, as well as the crews and captains of the various research vessels involved. This is contribution #5877 from the University of Maryland Center for Environmental Science. This is NRCan contribution number / Numéro de contribution de RNCan: 20200324.
    Keywords: Fluid flow ; Nootka transform fault ; Gas hydrate ; Intrusion ; Heat flow
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-12-01
    Print ISSN: 0036-8733
    Electronic ISSN: 1946-7087
    Topics: Biology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...