ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 116 (1994), S. 5916-5926 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 115 (1993), S. 3250-3262 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1017
    Keywords: Key words Prostaglandin H2 synthase-1 ; Phospholipid membranes ; Computer simulation ; Poisson equation ; Mean-field approximation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Prostaglandin H2 synthases (PGHS-1 and -2) are monotopic peripheral membrane proteins that catalyse the synthesis of prostaglandins in the arachidonate cascade. Picot et al. (1994) proposed that the enzyme is anchored to one leaflet of the bilayer by a membrane anchoring domain consisting of a right-handed spiral of amphipathic helices (residues 73–116) forming a planar motif. Two different computational approaches are used to examine the association of the PGHS-1 membrane anchoring domain with a membrane via the proposed mechanism. The electrostatic contribution to the free energy of solvation is obtained by solving numerically the finite-difference Poisson equation for the protein attached to a membrane represented as a planar slab of low dielectric. The nonpolar cavity formation and van der Waals contributions to the solvation free energy are assumed to be proportional to the water accessible surface area. Based on the optimum position determined from the continuum solvent model, two atomic models of the PGHS-1 anchoring domain associated with an explicit dimyristoylphosphatidylcholine (DMPC) bilayer differing by the thickness of the membrane bilayer were constructed. A total of 2 ns molecular dynamics simulation were performed to study the details of lipid- protein interactions at the microscopic level. In the simulations the lipid hydrocarbon chains interacting with the anchoring domain assume various shapes, suggesting that the plasticity of the membrane is significant. The hydrophobic residues in the membrane side of the helices interact with the hydrophobic membrane core, while the positively charged residues interact with the lipid polar headgroups to stabilize the anchoring of the membrane domain to the upper half of the bilayer. The phosphate headgroup of one DMPC molecule disposed at the center of the spiral formed by helices A, B, C and D interacts strongly with Arg120, a residue on helix D that has previously been identified as being important in the activity of PGHS-1. In the full enzyme structure, this position corresponds to the entrance of a long hydrophobic channel leading to the cyclooxygenase active site. These observations provide insights into the association of the arachidonic acid substrate to the cyclooxygenase active site of PGHS-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 6804-6812 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Molecular dynamics simulations are used to determine the time-dependent friction for pair diffusion in an isotropic Lennard-Jones fluid as a function of the separation between two diffusing particles. A numerical method proposed by Straub, Borkovec and Berne is used. It is found that both the initial value and the detailed time-dependence of the friction are dependent on the interparticle separation. The dependence of the pair diffusion coefficient on separation is determined. Comparisons are made with various hydrodynamic and collision theories. The rate constant for diffusion controlled reactions is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 5020-5033 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A method is presented that uses integral equation theory to determine analytic temperature derivatives of the radial distribution functions. It is illustrated by studying the solvation thermodynamics of monatomic solutes in aqueous solution. The results agree well with the density derivative method developed previously [Yu and Karplus, J. Chem. Phys. 89, 2366 (1988)]. An expression for the solvation enthalpy is derived which allows direct comparison with experimental and isobaric–isothermal (NPT) ensemble simulation data. Satisfactory agreement with experiment is found for pure water and for the aqueous solvation of monovalent ions. Simple equations that exploit the site–site HNC closures are given for the decomposition of the potential of mean force into its enthalpic (or energetic) and entropic components. Since the extended RISM (HNC-RISM) theory yields an incorrect (trivial) value of the dielectric constant, two different ways to correct for the asymptotic behavior of the solute–solute potential of mean force are compared. They lead to similar results but the method in which the solvent dielectric constant is modified from the outset can be applied more generally.The interactions between nonpolar and between polar solutes in water are decomposed into enthalpic and entropic contributions. This is difficult to do by computer simulations because of the lack of precision in such calculations. The association of nonpolar solutes in water is found to have comparable enthalpic and entropic contributions; this result disagrees with the usual description of an entropy-dominated hydrophobic interaction. For ions, the somewhat surprising result is that the association of like-charged species is enthalpy driven while for oppositely charged ions entropic effects are dominant. The process of bringing two like-charged ions together leads to higher local charge density; the more favorable solvation enthalpy arising from this increase in charge density (q2 dependence) more than compensates for the Coulombic repulsion. For oppositely charged ions, association leads to a partial charge neutralization in which the favorable Coulombic attraction is overwhelmed by the loss of stabilizing solvation enthalpy. The entropic increase is due to the greater freedom of the surrounding water molecules resulting from the partial charge neutralization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 2924-2937 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A general approach has been developed to allow accurate simulations of a small region part of a large macromolecular system while incorporating the influence of the remaining distant atoms with an effective boundary potential. The method is called the Generalized Solvent Boundary Potential (GSBP). By representing the surrounding solvent as a continuum dielectric, both the solvent-shielded static field from the distant atoms of the macromolecule and the reaction field from the dielectric solvent acting on the atoms in the region of interest are included. The static field is calculated once, using the finite-difference Poisson–Boltzmann (PB) equation, and the result is stored on a discrete grid for efficient simulations. The solvent reaction field is developed using a basis-set expansion whose coefficients correspond to generalized electrostatic multipoles. A matrix representing the reaction field Green's function between those generalized multipoles is calculated only once using the PB equation and stored for efficient simulations. In the present work, the formalism is applied to both spherical and orthorhombic simulation regions for which orthonormal basis-sets exist based on spherical harmonics or cartesian Legendre polynomials. The GSBP method is also tested and illustrated with simple model systems and two detailed atomic systems: the active site region of aspartyl-tRNA synthetase (spherical region) and the interior of the KcsA potassium channel (orthorhombic region). Comparison with numerical finite-difference PB calculations shows that GSBP can accurately describe all long-range electrostatic interactions and remain computationally inexpensive. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 4850-4861 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A general method has been developed to include the electrostatic reaction field in Brownian dynamics (BD) simulations of ions diffusing through complex molecular channels of arbitrary geometry. Assuming that the solvent is represented as a featureless continuum dielectric medium, a multipolar basis-set expansion is developed to express the reaction field Green's function. A reaction field matrix, which provides the coupling between generalized multipoles, is calculated only once and stored before the BD simulations. The electrostatic energy and forces are calculated at each time step by updating the generalized multipole moments. The method is closely related to the generalized solvent boundary potential [Im et al., J. Chem. Phys. 114, 2924 (2001)] which was recently developed to include the influence of distant atoms on a small region part of a large macromolecular system in molecular dynamics simulations. It is shown that the basis-set expansion is accurate and computationally inexpensive for three simple models such as a spherical ionic system, an impermeable membrane system, and a cylindrical pore system as well as a realistic system such as OmpF porin with all atomic details. The influence of the static field and the reaction field on the ion distribution and conductance in the OmpF channel is studied and discussed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 9050-9063 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An approach is developed to obtain statistical properties similar to those of an infinite bulk system from computer simulations of a finite cluster. A rigorous theoretical formulation is given for the solvent boundary potential which takes the influence of the surrounding bulk into account. The solvent boundary potential is the configuration-dependent solvation free energy of an effective cluster composed of an arbitrary solute and a finite number of explicit solvent molecules embedded inside a hard sphere of variable radius; the hard sphere does not act directly on the solute or the explicit solvent molecules, and its radius varies according to the instantaneous configurations. The formulation follows from an exact separation of the multidimensional configurational Boltzmann integral in terms of the solvent molecules nearest to the solute and the remaining bulk solvent molecules. An approximation to the solvent boundary potential is constructed for simulations of bulk water at constant pressure, including the influence of van der Waals and electrostatic interactions. The approximation is illustrated with calculations of the solvation free energy of a water molecule and of sodium and potassium ions. The influence of bulk solvent on the conformational equilibrium of molecular solutes is illustrated by performing umbrella sampling calculations of n-butane and alanine dipeptide in water. The boundary potential is tested to examine the dependence of the results on the number of water molecules included explicitly in the simulations. It is observed that bulk-like results are obtained, even when only the waters in the first hydration shell are included explicitly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 103 (1995), S. 360-364 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The average solvent distribution near complex solid substrates of arbitrary geometry is calculated by solving the hypernetted chain (HNC) integral equation on a three-dimensional discrete cubic grid. A numerical fast Fourier transform in three dimensions is used to calculate the spatial convolutions appearing in the HNC equation. The approach is illustrated by calculating the average solvent density in the neighborhood of small clusters of Lennard-Jones particles and inside a periodic array of cavities representing a simplified model of a porous material such as a zeolite. Molecular dynamics simulations are performed to test the results obtained from the integral equation. It is generally observed that the average solvent density is described accurately by the integral equation. The results are compared with those obtained from a superposition approximation in terms of radial pair correlation functions, and the reference interaction site model (RISM) integral equations. The superposition approximation significantly overestimates the amplitude of the density peaks in particular cases. Nevertheless, the number of the nearest neighbors around the clusters is well reproduced by all approaches. The present calculations demonstrate the feasibility of a numerical solution of HNC-type integral equations for arbitrarily complex geometries using a three-dimensional discrete grid. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 431 (2004), S. 830-834 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Potassium channels are essential for maintaining a normal ionic balance across cell membranes. Central to this function is the ability of such channels to support transmembrane ion conduction at nearly diffusion-limited rates while discriminating for K+ over ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...