ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Snakes have provided useful vertebrate models for understanding circulatory adaptation to gravity, attributable to their elongate body shape and evolutionary diversificaton in terms of ecology and behavior. Recently we have studied cardiovascular responses of snakes to hypergravic acceleration forces produced acutely in the head-to-tail direction (+Gz) on a short-arm centrifuge. Snakes were held in a nearly straight position within a horizontal plastic tube and subjected to a linear force gradient during acceleration. Carotid blood flow provided an integrated measure of cardiovascular performance. Thus, cardiovascular tolerance of snakes to stepwise increments of Gz was measured as the caudal Gz force at which carotid blood flow ceased. Tolerance to increasing Gz varies according to adaptive evolutionary history inferred from the ecology and behavior of species. With respect to data for six species we investigated, multiple regression analysis demonstrates that Gz tolerance correlates with gravitational habitat, independently of body length. Relative to aquatic and non-climbing species, carotid blood flow is better maintained in arboreal or scansorial species, which tolerate hypergravic forces of +2 to +3.5 Gz. Additionally, semi-arboreal rat snakes (Elaphe obsoleta) exhibit plasticity of responses to long-term, intermittent +1.5 Gz stress. Compared to non-acclimated controls, acclimated snakes show greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of prostaglandin ratios favorable to maintenance of arterial blood pressure, and medial hypertrophy in major arteries and veins. As in other vertebrates, Gz tolerance of snakes is enhanced by acclimation, high arterial pressure, comparatively large blood volume, and body movements. Vascular studies of snakes suggest the importance to acclimation of local responses involving vascular tissue, in addition to centrally mediated responses to fluid shifts.
    Keywords: Life Sciences (General)
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); 10; 2; 145-52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 171 (1982), S. 321-353 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The masticatory pattern of Sphenodon punctatus, the sole remaining rhynchocephalian, now restricted to islands off the coast of New Zealand, has been analyzed by detailed anatomy, cinematography, cinefluoroscopy, and electromyography. Food reduction consists of a closing, crushing bite followed by a propalineal sliding of the dentary row between the maxillary and palatine ones. The large, fleshy tongue can be protruded to pick up small prey, and also plays a major role in prey manipulation. The rotational closing movement of the jaw, supporting the basic crushing movement, is induced by the main adductor musculature. It is followed by a propalineal anterior displacement relying heavily on the action of the M. pterygoideus. The fiber lengths of the several muscles reflect the extent of shortening. The most obvious modification appears in the M. pterygoideus, which contains a central slip of pinnately arranged short fibers that act a period different from that of the rest of the muscle; their action increases the power during the terminal portion of the propalineal phase. This also allows the animal to use its short teeth in an effective shearing bite that cuts fragments off large prey.The action of single cusped dentary teeth acting between the maxillary and palatine tooth rows provides a translational crushing-cutting action that may be an analog of the mammalian molar pattern. However, this strictly fore-aft slide does not incorporate capacity for later development of lateral movement.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 223 (1995), S. 303-323 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The sharply tapering skull of the honey possum is delicately constructed and has only a few, minute teeth; its mandible is reduced to a thin, flexible rod. The mandibular fossa has been diplaced caudally to the caudomedial corner of the squamosal. Head skeletons of the feathertail glider and western pygmy-possum, omnivores that are closely related to the honey possum, bear greater resemblance to the distantly related carnivorous fat-tailed dunnart than to the honey possum.Selected muscles associated with the jaws, hyoid, and tongue of these four mouse-sized (9-22 g) marsupials are described for the first time. The honey possum is characterized by a greatly reduced temporalis that is almost completely hidden by the eye. Its digastric consists of a single belly that inserts onto the caudal margin of the mylohyoid. The lateral pterygoid is relatively long as it extends caudally to insert onto the elongated mandible. The stylohyoid originates high up on the caudal surface of the tympanic bulla; it curves around the caudal and ventral surfaces of the bulla to reach the basihyoid. The insertion of the genioglossus is restricted to the caudal quarter of the tongue. Homologous muscles of the feathertail glider and western pygmy-possum are more similar to those of the fat-tailed dunnart. In addition to the very different musculoskeletal system, the honey possum has an unusual tongue that tapers to a fine point. © 1995 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...