ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 1764-1770 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of surface-roughness scattering on electron transport properties in extremely thin double gate silicon-on-insulator inversion layers has been analyzed. It is shown that if the silicon layer is thin enough the presence of two Si–SiO2 interfaces plays a key role, even for a very low transverse effective field, where surface-roughness scattering is already noticeable, contrary to what happens in bulk silicon inversion layers. We have studied the electron transport properties in these devices, solving the Boltzmann transport equation by the Monte Carlo method, and analyzed the influence of the surface-roughness parameters and of the silicon layer thickness. For low transverse effective fields, μSR decreases as the silicon layer decreases. However, at higher transverse effective fields, there is a different behavior pattern of μSR with Tw since it begins to increase as Tw decreases until a maximum is reached; for lower silicon layer thicknesses, surface-roughness mobility abruptly falls. Finally we have compared the behavior of μSR versus Tw for double gate silicon-on-insulator and single gate silicon-on-insulator inversion layers. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 5121-5128 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have studied the electron-transport properties of strained-Si on relaxed Si1−xGex channel MOSFETs using a Monte Carlo simulator adapted to account for this new heterostructure. The low-longitudinal field as well as the steady- and nonsteady-state high-longitudinal field transport regimes have been described in depth to better understand the basic transport mechanisms that give rise to the performance enhancement experimentally observed. The different contributions of the conductivity-effective mass and the intervalley scattering rate reduction to the mobility enhancement as the Ge mole fraction rises have been discussed for several temperature, effective, and longitudinal-electric field conditions. Electron-velocity overshoot effects are also studied in deep-submicron strained-Si MOSFETs, where they show an improvement over the performance of their normal silicon counterparts. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 4802-4806 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Phonon-limited mobility in ultrathin silicon-on-insulator inversion layers has been calculated by the Monte Carlo method both at room and at lower temperatures. The phonon-scattering rate has been shown to increase as a consequence of the greater confinement of electrons as the top silicon film thickness shrinks below a determined value. This fact helps to explain the mobility decrease that appears experimentally in these devices. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 6269-6275 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Inversion-layer mobility has been investigated in extremely thin silicon-on-insulator metal–oxide–semiconductor field-effect transistors with a silicon film thickness as low as 5 nm. The Poisson and Schrœdinger equations have been self-consistently solved to take into account inversion layer quantization. To evaluate the electron mobility, the Boltzmann transport equation has been solved by the Monte Carlo method, simultaneously taking into account phonon, surface-roughness, and Coulomb scattering. We show that the reduction of the silicon layer has several effects on the electron mobility: (i) a greater confinement of the electrons in the thin silicon film, which implies an increase in the phonon-scattering rate and therefore a mobility decrease; (ii) a reduction in the conduction effective mass and the intervalley-scattering rate due to the redistribution of carriers in the two subband ladders as a consequence of size quantization resulting in a mobility increase; and (iii) an increase in Coulomb scattering because of a greater number of interface traps in the buried Si–SiO2 and to a closer approach of these charged centers to the mobile carriers. The dependence of these effects on the silicon-layer thickness and on the inversion-charge concentration causes the mobility to be a nontrivial function of these variables. A detailed explanation of the mobility behavior is provided. Mobility for samples with silicon thickness below 10 nm is shown to increase in an electric field range that depends on the charged center concentration, while for silicon layers over 10 nm mobility always decreases as the silicon-layer thickness is reduced. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 6854-6863 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of surface roughness scattering on electron transport properties in extremely thin silicon-on-insulator inversion layers is carefully analyzed. It is shown that if the silicon layer is thin enough (thinner than 10 nm) the presence of the buried interface plays a very important role, both by modifying the surface roughness scattering rate due to the gate interface, and by itself providing a non-negligible scattering rate. The usual surface roughness scattering model in bulk silicon inversion layers is shown to overestimate the effect of the surface-roughness scattering due to the gate interface as a consequence of the minimal thickness of the silicon layer. In order to account for this effect, an improved model is provided. The proposed model allows the evaluation of the surface roughness scattering rate due to both the gate interface and the buried interface. Once the scattering rates are evaluated, electron mobility is calculated by the Monte Carlo method. The effect of the buried interface roughness on electron mobility is carefully analyzed by changing the height of the roughness. The effect of the silicon layer thickness on this scattering mechanism is also considered. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 2219-2221 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Results of electron mobility calculations at room temperature in quantized cubic silicon carbide (β-SiC) inversion layers are reported. A comparison with silicon mobility curves is provided. Drift velocities both at room and higher temperatures are calculated by Monte Carlo simulations including electron quantization and Coulomb scattering, in addition to phonon and surface roughness scattering. We have also observed that steady-state drift velocity curves show a maximum that decreases as the transverse electric field increases, due to the greater importance of intervalley scattering with respect to polar phonon scattering. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 69 (1996), S. 797-799 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Results of electron mobility in strained-Si inversion layers grown on Si1−xGex substrates are reported. Drift velocities are calculated by Monte Carlo simulations including electron quantization and Coulomb scattering, in addition to phonon and surface roughness scattering. The strain is shown to contribute as well to the enhancement of the Coulomb-limited mobility due to better screening of the interface centers by the mobile carriers. Even in the case of high-doped substrates, Coulomb scattering does not cancel the mobility enhancement provided by the reduction of both intervalley scattering and conduction effective mass. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 6857-6865 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Electron transport properties in cubic silicon carbide (β-SiC) quantized inversion layers have been studied and the results of electron mobility calculations at room and higher temperatures have been reported. To do so, we have developed a Monte Carlo simulator used in conjunction with the self-consistent solution of the Poisson and Schroedinger equations. We show that for a fixed inversion charge concentration, β-SiC inversion layer electrons spread less into the bulk than Si ones as a consequence of the effective mass values. Therefore, the defects of the SiO2/β-SiC (interface roughness, charged centers) will strongly affect electron transport properties. We present simulated mobility curves for quantized β-SiC inversion layers taking into account different scattering mechanisms which are then compared to Si mobility curves. Special attention has been paid to the effect of Coulomb scattering due to both interface- and oxide-trapped charges. Mobility curves obtained for different interface-trapped charge concentrations show that electrons in silicon carbide inversion layers are more affected by surface defects at room and higher temperatures than they are in silicon inversion layers. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Physics B (Proceedings Supplements) 8 (1989), S. 393-396 
    ISSN: 0920-5632
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Nuclear Physics B (Proceedings Supplements) 24 (1991), S. 129-136 
    ISSN: 0920-5632
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...