ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-08-25
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-01-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-07-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Features identified on Mariner 10 high resolution images of Mercury, acquired during three flybys between 1974 and 1975, form the basis of Mercury's planetwide control network. Although images from all three flybys are used in the net, the large amount of contiguous coverage from the second flyby, a southern bright-side pass, make these images the strongest contributors to the control net. Mercury is in synchronous rotation with a period of 58.6462 days and its spin axis is approximately normal to the equatorial plane. The 20 degree meridian is defined by the crater Hun Kal, located just south of the equator. The control network computations involve the photogrammetric determination of control point coordinates and an analytical triangulation solution. The current control network computations for Mercury are performed in the J2000 coordinate system according to the International Astronomical Union (IAU) convention. In recent years, updates to the control network have included improved trajectory solutions and modification of the standard radii (2439) at several points based on Earth-based radar altimetry data. The current status of the control network calculations is presented. Improvements were made to existing control points and new control points were added to the net to strengthen the overall network and improve the standard error of measurement.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1990; p 492-493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: The modern geodetic control network of Mars was first established based on Mariner 9 images with 1-2 km/pixel resolutions and covered almost the entire Martian surface. The introduction of higher resolution (10-200 meter/pixel) Viking Orbiter images greatly improved the accuracy and density of points in the control network. Analysis of the Viking Lander radio tracking data led to more accurate measurements of Mars' rotation period, spin axis direction, and the lander coordinates relative to the inertial reference frame. The prime meridian on Mars was defined by the Geodesy/Cartography Group of the Mariner 9 Television Team as the crater Airy-0, located about 5 degrees south of the equator. The Viking 1 Lander site was identified on a high resolution Viking frame. The control point measurements form the basis of a least squares solution determined by analytical triangulation after the pixel measurements are corrected for geometric distortions and converted to millimeter coordinates in the camera focal plane. Photogrammetric strips encircling Mars at the equator and at 60 degree north south were used to strengthen the overall net and improve the accuracy of the coordinates of points. In addition, photogrammetric strips along 0, 90, 180, and 270 degrees longitude to the Viking 1 Lander site have all significantly strengthened the control network. Most recently, photogrammetric strips were added to the net along 30 degrees north latitude between 0 and 180 degrees, and along 30 degrees between 180 and 360 degrees. The Viking 1 Lander site and Airy-0 are linked through photogrammetric strips occurring along the 0 degree meridian from Airy-0 to 65 degrees north, from that point through the Viking 1 Lander site to the equator, and along the equator to 180 degrees longitude. The Viking 1 lander site is thus a well calibrated area with coordinates of points accurate to approximately 200 meters relative to the J2000 inertial coordinate system. This will be a useful calibration region for upcoming missions. The current status of the control network calculations is presented.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1990; p 497-498
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A preliminary control network for the Saturnian satellite Phoebe was determined based upon 6 distinct albedo features mapped on 16 Voyager 2 images. Using an existing map and an analytical triangulation program which minimized the measurement error, the north pole of Phoebe was calculated to be alpha sub 0 = 355.0 deg + or - 9.6 deg, delta sub 0 = 68.7 deg + or - 7.9 deg, where alpha sub 0, delta sub 0 are standard equatorial coordinates with equinox J2000 at epoch J2000. The prime meridian of Phoebe was computed to be W = 304.7 deg + 930.833872d, where d is the interval in days from JD 2451545.0 TDB.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-185716 , NAS 1.26:185716 , N-2934-NASA
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-14
    Description: Bell Regio is a broad topographic rise located at approximately 30 deg N, 45 deg E which extends approximately 1500 km in the N-S direction and is characterized by extensive volcanism. The geology and surface characteristics of Bell Regio are examined in order to understand the geologic evolution of the region and the surface characteristics of the major volcanic units. Relationships between Magellan SAR backscatter values and altimeter-derived ring slope data are analyzed, and terrestrial SAR data are used to suggest possible surface morphologies.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 247-248
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: A control network for Triton has been computed using a bundle-type analytical triangulation program. The network contains 105 points that were measured on 57 Voyager-2 pictures. The adjustment contained 1010 observation equations and 382 normal equations and resulted in a standard measurement error of 13.36 microns. The coordinates of the control points, the camera orientation angles at the times when the pictures were taken, and Triton's mean radius were determined. A separate statistical analysis confirmed Triton's radius to be 1352.6 + or - 2.4 km. Attempts to tie the control network around the satellite were unsuccessful because discontinuities exist in high-resolution coverage between 66 deg and 289 deg longitude, north of 38 deg latitude, and south of 78 deg latitude.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 96; 15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-27
    Description: The geology and surface morphology of Bell Regio (18-42 deg N, 32-58 deg E) are investigated using a combination of Magellan, Venera, and analogous terrestrial data. The properties of surface units are compared to either direct terrestrial analog measurements or to the behaviors predicted by theoretical models. Five major volcanic sources are identified from geologic mapping (Tepev Mons, Nefertiti corona, a large shield volcano east of Tepev, and two small edifices southeast of Tepev). The volcano Api Mons lies northeast of the main Bell uplift. The oldest volcanic units are associated with an extensive low shield volcano east of Tepev Mons and a small edifice southeast of Tepev. The annular flow apron of Tepev Mons formed next, with volcanism at a second small edifice on the southeast flank of Tepev Mons producing the youngest flow units. Comparisons between Magellan data, terrestrial radar images, and field topography profiles suggest that only three units resemble terrestrial a'a flows; the remainder are consistent with smoother pahoehoe-type surfaces. This suggests that most of the flow units were erupted at relatively low volume effusion rates (less than 100 cu m/sec) over long periods of time or had very low viscosities
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E10; p. 21,153-21,171
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...