ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2006-01-01
    Print ISSN: 1097-2765
    Electronic ISSN: 1097-4164
    Topics: Biology , Medicine
    Published by Cell Press
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-01
    Print ISSN: 0094-5765
    Electronic ISSN: 1879-2030
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: Multi-layer insulation, MLI, is a material used on rocket bodies and satellites mainly for thermal insulation. MLI can be comprised of a variety of materials, layer numbers, and dimensions based on its purpose. A common composition of MLI consists of outer facing copper-colored Kapton with an aluminized backing for the top and bottom layers and the middle consisting of alternating layers of DARCON or Nomex netting with aluminized Mylar. If this material became separated from the spacecraft or rocket body its orbit would vary greatly in eccentricity due to its high area to mass (A/m) and susceptibility to solar radiation pressure perturbations. Recently a debris population was found with high A/m, which could be MLI. Laboratory photometric measurements of one intact piece and three different layers of MLI is presented in an effort to predict the characteristics of a MLI light curve and aid in identifying the source of the new population. For this paper, the layers used will be consistent with the common MLI mentioned in the above paragraph. Using a robotic arm, the piece was rotated from 0-360 degrees in one degree increments along the object s longest axis. Laboratory photometric data was recorded with a CCD camera using various filters (Johnson B, Johnson V and Bessell R). The measurements were taken at an 18 degree (light-object-camera) phase angle. As expected, the MLI pieces showed characteristics similar to a bimodal magnitude plot of a flat plate, but with more photometric features, dependant upon the layer of MLI. Time exposures varied from piece to piece such that the amount of pixels saturated would be minimal. In addition to photometric laboratory measurements, laboratory spectral measurements are shown for the same MLI samples. Spectral data will be combined to match the wavelength region of photometric data so a measure of truth can be established for the photometric measurements. Spectral data shows a strong absorption feature near 4800 angstroms, which is due to the copper color of Kapton. If the debris is MLI and the outer layer of copper coloring of Kapton is present, evidence would be seen spectrally by the specific absorption feature as well as using R-B (red-blue) light curves. Using laboratory photometric measurements and the results from spectral laboratory measurements, an optical property database is provided for an object with a high A/m. The benefits of this database for remote optical measurements of orbital debris are shown by illustrating the optical properties expected for a high A/m object, specifically common satellite and rocket body MLI.
    Keywords: Composite Materials
    Type: Advanced Maui Optical and Space Surviellance Technologies Conference; 12 - 15 Sept. 2007; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: There exists at GEO a significant population of faint debris (R 〉 15th magnitude) with high area-to-mass ratios (AMR) (1 to 30 sq m/kg). Their orbital elements (particularly eccentricity and inclination) are observed to change on the time-scale of a week. The consensus is that these objects may be fragments of multi-layer insulation (MLI) blankets. Their orbits are primarily perturbed by solar radiation pressure. In this paper we will report preliminary results from an international collaboration to investigate the unresolved optical properties of these objects. This population was originally discovered by the ESA Space Debris Telescope, and the bulk of the objects to be described here are based on discoveries made with this telescope. Additional objects were supplied by both Russia and the US Air Force. Follow-up optical observations were obtained for a sample of a dozen objects by MODEST (the Michigan Orbital DEbris Survey Telescope) located at Cerro Tololo Inter-American Observatory in Chile. Sequences of calibrated observations in filters B, V, Broad R, and I were obtained under photometric conditions. Multi-color photometric observations in B, V, R, and I band of the same objects were also acquired at the Zimmerwald 1-meter telescope, located near Bern, Switzerland. Light curves of selected high AMR objects will be shown with a temporal resolution of a few seconds and typically span about 10 minutes. Photometric observations of these objects were acquired at the Crimean Astrophysical Observatory (CrAO). This data set includes light curves of objects having high variability of brightness and observed with 2.6 m and 0.64 m class instruments. We will present an analysis of the observed magnitudes and colors, and their correlations (or lack of correlation) with orbital elements, and with predicted values for MLI fragments. This represents the first such collaborative observational program on faint debris at GEO.
    Keywords: Astrophysics
    Type: 58th International Astronautical Congress 2007; Sep 24, 2007 - Sep 28, 2007; Hyderabad; India
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...