ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Phytopathology 33 (1995), S. 199-221 
    ISSN: 0066-4286
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 894-901 
    ISSN: 1432-2242
    Keywords: Heat-sensitivity ; Virulence ; Dominant resistance ; Tomato ; Root-knot nematodes ; M. javanica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Clones of Lycopersicon peruvianum PI 2704352R2, PI 270435-3MH and PI 126443-1MH expressed novel resistance to three Mi-avirulent M. javanica isolates in greenhouse experiments. Clones from PI 126443-1MH were resistant to the three M. javanica isolates at 25°C. The three isolates were able to reproduce on one embryorescue hybrid of PI 126443-1MH, but not on three L. peruvianum-L. esculentum bridge-line hybrids of PI 1264431MH when screened at 25°C (Mi-expressed temperature). Clones of PI 270435-2R2 and all its hybrids with susceptible genotypes were resistant to the three M. javanica isolates at 25°C. The bridge-line hybrid EPP-2xPI 2704352R2 was susceptible to M. javanica isolate 811 at 32°C, whereas PI 270435-2R2 and all other hybrids of PI 27043 5-2R2 crossed with susceptible genotypes were resistant at 32°C. At 32°C, one F2 progeny of PI 126443-IMHxEPP-1, and three test-cross progenies of PI 1264409MHx[PI 270435-3MHxPI 126443-1MH], and reciprocal test-cross progenies of [PI 270435-3MHxPI 2704352R2]xPI 126440-9MH, each segregated into resistant: susceptible (R∶S) ratios close to 3∶1. The results from the F2 progeny indicated that heat-stable resistance to Mi-avirulent M. javanica in PI 126443 -1MH is conferred by a single dominant gene. The results from the test-crosses indicated that this gene in PI 126443-1MH is different from the resistance gene in PI 270435-3MH. The resistance gene in PI 270435-3MH was also shown to differ from the resistance factor in PI 270435-2R2. The expression of differential susceptibility and resistance to M. javanica and M. incognita in individual plants of the bridge-line hybrid, embryo-rescue hybrid, F2, and test-crosses indicated that at least some genes governing resistance to M. javanica differ from the genes conferring resistance to M. incognita. A new source of heat-stable resistance to M. javanica was identified in Lycopersicon chilense.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 93 (1996), S. 960-967 
    ISSN: 1432-2242
    Keywords: Heat-sensitivity ; Virulence ; Tomato ; Root-knot nematodes ; Bridge-line
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Lycopersicon peruvianum PI 270435 clone 2R2 and PI 126443 clone 1MH were crossed reciprocally with three L. esculentum-L. peruvianum bridge-lines. The incongruity barrier between the two plant species was overcome; F1 progeny were obtained from crosses between four parental combinations without embryo-rescue culture. Hybridity was confirmed by leaf and flower morphology and by the production of nematode-resistant F1 progeny on homozygous susceptible parents. Clones of the five F1 bridgeline hybrids were highly resistant to Mi-avirulent root-knot nematode (Meloidogyne incognita) at both 25°C and 30°C soil temperatures. However, only clones from PI 270435-3MH and PI 126443-1MH, and hybrids from PI 126443-1MH, were resistant to Mi-virulent M. incognita isolates at high soil temperature. Clones and hybrids from PI 270435-2R2 were not resistant to two Mi-virulent M. incognita isolates at high soil temperature. A source of heat-stable resistance was identified in bridge-line EPP-2, and was found to be derived from L. peruvianum LA 1708. Accessions of the L. peruvianum ‘Maranon races’, LA 1708 and LA 2172, and bridge-line EPP-2, segregated for heat-stable resistance to Mi-avirulent M. incognita, but were susceptible to Mi-virulent M. incognita isolates. Clone LA 1708-I conferred heat-stable resistance to M. arenaria isolate W, which is virulent to heat-stable resistance genes in L. peruvianum PI 270435-2R2, PI 270435-3MH, and PI 126443-1MH. Clone LA 1708-I has a distinct heat-stable factor for resistance to Mi-avirulent M. arenaria isolate W, for which the gene symbol Mi-4 is proposed. A Mi-virulent M. arenaria isolate Le Grau du Roi was virulent on all Lycopersicon spp. accessions tested, including those with novel resistance genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 98 (1999), S. 274-280 
    ISSN: 1432-2242
    Keywords: Key words Heat-sensitivity ; Virulence ; Tomato ; Root-knot nematodes ; Mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The root-knot nematode heat-stable resistance locus from L. peruvianum LA2157 was mapped on chromosome 6. All wild tomato LA2157 entries and the LA2157 S1 progeny tested were resistant to Mi-avirulent Meloidogyne spp. isolates at 32°C, indicating that the self-compatible accession is homozygous for heat-stable nematode resistance. The novel resistance locus was mapped on a RFLP linkage map; this map was based on a segregating F2 population obtained from the interspecific F1 between L. esculentum cv ‘Solentos’ and L. peruvianum LA2157. The inheritance of the heat-stable resistance was evaluated in 100 F3 lines derived from one F1 interspecific hybrid. The genotype of the resistance locus of the individual F2 plants was based on the phenotypic classification of their F3 lines, and the data were used to map the resistance locus on the arm of chromosome 6 with the closest linkage to TG178. The position of the novel heat-stable resistance of LA2157 was localized in the resistance genes’ cluster close to the location of gene Mi-1. Cuttings of the F3 lines expressed resistance to Mi-1-avirulent M. incognita and M. javanica biotypes at 25°C and at 32°C (a temperature at which Mi-1 resistance is not expressed). There was no difference in the segregating population for expression of heat-unstable resistance and heat-stable resistance to Mi-1-avirulent Meloidogyne spp. However, LA2157 and cuttings of the above F3 lines were susceptible to a Mi-1-virulent M. incognita isolate at 30°C and to a M. hapla isolate at 25°C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Heat sensitivity ; Tomato ; Root-knot nematodes ; Dominance ; Oligogenic resistance ; Gene Mi-2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The inheritance of heat-stable resistance to the root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, was studied in crosses between different accessions and clones of Lycopersicon peruvianum L. F1, F2 and BC1 generations were evaluated for their index of resistance based on numbers of eggs and infective second-stage juveniles (J2) per gram of root, and the segregation ratios were determined in experiments carried out at constant soil temperatures of 25 °C and 30 °C. L. peruvianum P.I. 270435 clones 3 MH and 2R2 and P.I. 126443 clone 1 MH, all heatstable resistant, were crossed with L. peruvianum P.I. 126440 clone 9 MH, which is susceptible at both 25 °C and 30 °C. All F1 progeny were resistant at 25 °C and 30 °C; F2 and BC1 generations at 25 °C gave resistant: susceptible (R∶S) ratios of 15∶1 and 3∶1, respectively, which suggests that resistance is conditioned by two independently assorting genes. However, at 30 °C, R∶S ratios of 3∶1 and 1∶1 were observed for the F2 and BC1 generations, respectively. These results indicate that heat-stable resistance is conferred by a single dominant gene expressed at 30 °C, while the second resistance gene is heat unstable and not expressed at 30 °C. P.I. 270435 clones 2R2 and 3 MH and P.I. 126443 clone 1 MH were crossed with P.I. 128657 clone 3 R4 (source of gene Mi), which is resistant at 25 °C but susceptible at 30 °C. All of the F1 progeny were resistant at 25 °C and 30 °C.TC1 progeny of 270435-2 R2 x 128657-3 R4, 270435-3 MH x 128657-3 R4 and 126443-1 MH x 128657-3 R4 crossed with susceptible 126440-9 MH were all resistant at 25 °C and segregated in a 1∶1 ratio at 30 °C. These results also suggest that the heat-stable resistance is monogenic and that it is non-allelic to gene Mi. The non-segregation of TC1 progenies at 25 °C, suggests that the heat-unstable resistance factor in L. peruvianum P.I. 270435 clones 2 R2 and 3 MH and in P.I. 126443 clone 1 MH is allelic to or the same as gene Mi. We propose the symbol Mi-2 for the gene in P.I. 270435 that confers heat-stable resistance to M. incognita.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 83 (1992), S. 720-726 
    ISSN: 1432-2242
    Keywords: Allelic dosage ; Dominance ; Nematode resistance ; Phaseolus vulgaris ; Temperature sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Bean lines PI 165426, PI 165435, and Alabama no. 1, possessing resistance to Meloidogyne incognita, and bean lines A315 and A445, possessing gene Me1, were tested against several Meloidogyne incognita and M. javanica isolates. Resistance in bean line PI 165426, PI 165435, and Alabama no. 1 was found to be complementary to resistance conferred by gene Me1. Resistance in PI 165426 was found to be dominant and conditioned by one dominant and one recessive gene at 26 °C. We propose Me2me3 as the genotype symbol for this resistance. Resistance in lines PI 165435 and Alabama no. 1 was found to be recessive. Since Alabama no. 1 and PI 165435 were resistant at 26 °C but susceptible at 29 °C, and segregation of F2 progeny derived from crosses involving PI 165426 was 13∶3 at 26 °C and 1∶2∶1 at 28 °C, we concluded that the temperature at which transition from resistance to susceptibility occurs was determined by whether the resistance gene is dominant or recessive. Furthermore, the 1∶2∶1 segregation of F2 plants and an intermediate resistance reaction of F1 plants of crosses involving PI 165426 indicated that allelic dosage of the dominant gene also influenced the transition temperature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Heat-sensitivity ; Virulence ; Tomato ; Root-knot nematodes ; Test-crossing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Resistance to Meloidogyne incognita (Kofoid and White) Chitwood in clones of Lycopersicon peruvianum (L.) Mill. PI 126443-1MH, 270435-2R2 and 2704353MH, their F1, a field-produced F2, and their test-cross (TC1) populations, was evaluated based on egg masses and eggs produced on root systems. Reactions to M. incognita isolates differing in virulence to gene Mi were determined at 25°C (Mi expressed) and 32°C (Mi not expressed). PI 126443-1MH, 270435-2R2, 270435-3MH, and their F1 progenies were resistant to Mi-virulent and Mi-avirulent isolates. At 32°C with a Mi-avirulent isolate and at 25°C with a Mi-virulent isolate, four TC1 generations segregated into resistant: susceptible (R∶S) ratios close to 3∶1. These results indicated resistance to Mi-(a)virulent M. incognita isolates is conferred by different non-allelic dominant genes in PI 126443-1MH, 270435-2R2 and 270435-3MH. The F2 progeny of PI 126443-1MH x EPP-1, challenged with Mi-avirulent M. incognita at 32°C and with Mi-virulent M. incognita at both 25°C and 32°C, segregated with a ratio of 3∶1 (R∶S), indicating expression of a single dominant resistance gene in PI 126443-1MH in each case. In dual screenings on clones of the same individual plants from the TC1 and F2 segregating populations, some individual plants were susceptible at 32°C to a Mi-avirulent isolate but resistant to the Mi-virulent isolate, and vice versa, suggesting that different but linked genes confer heat-stable resistance to Mi-avirulent M. incognita and resistance to Mi-virulent M. incognita. We propose the symbol Mi-5 for the gene in PI 126443 clone 1MH and the symbol Mi-6 for the gene in PI 270435 clone 3MH which both confer resistance to Mi-avirulent M. incognita isolates at high temperature. We propose the symbol Mi-7 for the gene in PI 270435 clone 3MH and the symbol Mi-8 for the gene in PI 270435 clone 2R2 that both confer resistance to the Mi-virulent M. incognita isolate 557R at moderate (25°C) temperature. The novel resistance genes are linked and reside in a genomic region in each parental clone that is independent from the Mi locus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 100 (2000), S. 735-742 
    ISSN: 1432-2242
    Keywords: Key words Carrot ; Daucus carota L. ; Disease resistance ; Meloidogyne javanica ; Root knot nematodes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Root-knot nematodes (Meloidogyne spp.) are serious pests of carrot (Daucus carota L.) worldwide. While soil treatment with nematicides is the primary means for managing nematodes in carrot, there is a need to identify and introduce host plant resistance for crop improvement. This study was conducted to determine the inheritance of resistance to root-galling and reproduction by M. javanica (Treub) Chitwood in a selection (BR-1252) of carrot variety Brasilia. F2, F3, F4, and BC1 progenies from the cross BR-1252×B6274 (a susceptible inbred line) were screened in pot tests for reaction to M. javanica. The observed reactions based on galling and egg production on fibrous roots gave segregation patterns in all tests that were consistent with relatively simply inherited dominant resistance. Field testing in progress indicates that this resistance is very effective against both M. javanica and M. incognita. A single gene model fits the observed data acceptably well in F3 generations. However, the range of 3% to 51% susceptible plants in segregating F3 families and 1% to 47% in segregating F4 families is much wider than the 25% expected with a single-gene model, and linked duplicate factors in the coupling phase could also explain the observed segregation patterns. The variation in percentage susceptibility among these families did not clearly cluster into three expected categories (25% S, 20.25% S, and 0.25% S for a 10-cM linkage distance, or 25% S, 16% S and 1% S for 20 cM), but it did tend to occur over the same range. Thus a 10-cM to 20-cM-linked duplicate factor model cannot be dismissed at this time. Egg production data in the F2, F3, and F4 families provided evidence for slightly lower resistance expression in the heterozygous condition. Thus, while overall expressed in a dominant fashion, the resistance does exhibit some allelic dosage response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2242
    Keywords: Key words Bulked segregant analysis ; Carrot ; Daucuscarota ; Disease resistance ; Meloidogyne javanica ; Root-knot nematode
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Inheritance studies have indicated that resistance to the root-knot nematode (Meloidogyne javanica) in carrot inbred line ’Brasilia-1252’ is controlled by the action of one or two (duplicated) dominant gene(s) located at a single genomic region (designated the Mj-1 locus). A systematic search for randomly amplified polymorphic DNA (RAPD) markers linked to Mj-1 was carried out using bulked segregant analysis (BSA). Altogether 1000 ten-mer primers were screened with 69.1% displaying scorable amplicons. A total of approximately 2400 RAPD bands were examined. Four reproducible markers (OP-C21700, OP-Q6500, OP-U12700, and OP-AL15500) were identified, in coupling-phase linkage, flanking the Mj-1 region. The genetic distances between RAPD markers and the Mj-1 locus, estimated using an F2 progeny of 412 individuals from ’Brasilia 1252’×’B6274’, ranged from 0.8 to 5.7 cM . The two closest flanking markers (OP-Q6500 and OP-AL15500) encompassed a region of 2.7 cM . The frequency of these RAPD loci was evaluated in 121 accessions of a broad-based carrot germplasm collection. Only five entries (all resistant to M. javanica and genetically related to ’Brasilia 1252’) exhibited the simultaneous presence of all four markers. An advanced line derived from the same cross, susceptible to M. javanica but relatively resistant to another root-knot nematode species (M. incognita), did not share three of the closest markers. These results suggest that at least some genes controlling resistance to M. incognita and M. javanica in ’Brasilia 1252’ reside at distinct loci. The low number of markers suggests a reduced amount of genetic divergence between the parental lines at the region surrounding the target locus. Nevertheless, the low rate of recombination indicated these markers could be useful landmarks for positional cloning of the resistance gene(s). These RAPD markers could also be used to increase the Mj-1 frequency during recurrent selection cycles and in backcrossing programs to minimize ’linkage drag’ in elite lines employed for the development of resistant F1 hybrids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    BT technology journal 18 (2000), S. 127-136 
    ISSN: 1573-1995
    Source: Springer Online Journal Archives 1860-2000
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Anything connected to the Internet needs, at some point, to pick up a globally unique address to identify it among everything else on the Internet. In the case of today's Internet, these addresses are Internet protocol version 4 (IPv4) addresses and they are limited in number. Responsibility for management of this limited resource is delegated from a global level through regional organisations and ultimately to individual Internet service providers. In order to gain maximum use out of the available number of addresses against the background of explosive growth in the size of the Internet, this valuable resource has to be carefully managed to ensure that there is enough to go round. This paper discusses what IP addresses are, the global organisations used to manage IP addresses, and how BT manages its IP addresses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...