ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 10 (1971), S. 3819-3825 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 11 (1978), S. 47-56 
    ISSN: 1432-1432
    Keywords: Genome duplication ; Genome topography ; Evolution ; Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Genes ofEscherichia coli were grouped according to the “biochemical relatedness” of the enzymes they specifiy, using two schemes to determine relatedness: similarity of reaction or similarity of reactants. The tendency of biochemically related genes as so defined to lie approximately 90° or 180° from one another on the circular genetic map was analyzed statistically. Of the classes analyzed, only the genes for the enzymes of glucose catabolism showed a significant departure from random distribution in this respect. The glucose catabolism genes showed a pronounced tendency to lie either 90° or 180° from one another (P = ca. 10−9), and, furthermore, most of these genes were found to lie in only four gene clusters on theE. coli genome. The significance of this observation is discussed in relation to evolutionary mechanisms and to mechanisms of gene expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 180 (1980), S. 479-481 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In addition to the cryptic lambdoid prophage genes that are known to reside at the rac locus in Escherichia coli K12 strains, a second cryptic lambdoid prophage has been located near the gal operon. This prophage was shown to contain DNA that is homologous to the QSR genes of λ phage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 180 (1980), S. 475-477 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In addition to ribosomal RNA genes, a relatively small number of genes are highly conserved between Escherichia coli andSalmonella typhimurium on the one hand, and either Serratia marcescens or Proteus morganii on the other hand. The conserved non-rRNA genes are not the same in S. marcescens and P. morganii. Different genetic segments have maintained nucleotide sequence similarity to parts of the E. coli and S. typhimurium genomes in the course of the evolution of S. marcescens and P. morganii.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 186 (1982), S. 82-86 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Partial homology of Salmonella typhimurium DNA to Escherichia coli DNA was demonstrated by Southern hybridization blots to exist on either side of the lac operon of E. coli but no homology was detected between S. typhimurium DNA and about 12 kb of E. coli DNA including the lac genes as well as about 5 kb of E. coli DNA between lac and proC. Thus portions of DNA seem to have been either added to the E. coli genome or deleted from the S. typhimurium genome since their divergence from a common ancestor. Although an IS1 element was located near the lac operon of E. coli, the insertional element was shown not to be near any of the junctures of discontinuity of E. coli - S. typhimurium homology near lac.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © 2008 Riley et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Genomics 9 (2008): 210, doi:10.1186/1471-2164-9-210.
    Description: The genome sequence of the sea-ice bacterium Psychromonas ingrahamii 37, which grows exponentially at -12C, may reveal features that help to explain how this extreme psychrophile is able to grow at such low temperatures. Determination of the whole genome sequence allows comparison with genes of other psychrophiles and mesophiles. Correspondence analysis of the composition of all P. ingrahamii proteins showed that (1) there are 6 classes of proteins, at least one more than other bacteria, (2) integral inner membrane proteins are not sharply separated from bulk proteins suggesting that, overall, they may have a lower hydrophobic character, and (3) there is strong opposition between asparagine and the oxygen-sensitive amino acids methionine, arginine, cysteine and histidine and (4) one of the previously unseen clusters of proteins has a high proportion of "orphan" hypothetical proteins, raising the possibility these are cold-specific proteins. Based on annotation of proteins by sequence similarity, (1) P. ingrahamii has a large number (61) of regulators of cyclic GDP, suggesting that this bacterium produces an extracellular polysaccharide that may help sequester water or lower the freezing point in the vicinity of the cell. (2) P. ingrahamii has genes for production of the osmolyte, betaine choline, which may balance the osmotic pressure as sea ice freezes. (3) P. ingrahamii has a large number (11) of three-subunit TRAP systems that may play an important role in the transport of nutrients into the cell at low temperatures. (4) Chaperones and stress proteins may play a critical role in transforming nascent polypeptides into 3-dimensional configurations that permit low temperature growth. (5) Metabolic properties of P. ingrahamii were deduced. Finally, a few small sets of proteins of unknown function which may play a role in psychrophily have been singled out as worthy of future study. The results of this genomic analysis provide a springboard for further investigations into mechanisms of psychrophily. Focus on the role of asparagine excess in proteins, targeted phenotypic characterizations and gene expression investigations are needed to ascertain if and how the organism regulates various proteins in response to growth at lower temperatures.
    Description: MR acknowledges support from DE-FG02-04ER63940. JTS acknowledges the support from the University of Washington NASA NAI program and the NSF Astrobiology IGERT program. TZW acknowledges support from a grant from the Fondation Fourmentin-Guilbert and AD acknowledges support from the European Union BioSapiens Network of Excellence, Grant LSHG CT-2003-503265
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © 2001 Serres et al. The definitive version was published in Genome Biology 2 (2001): research0035.1–0035.7, doi:10.1186/gb-2001-2-9-research0035.
    Description: Background: Since the genome of Escherichia coli K-12 was initially annotated in 1997, additional functional information based on biological characterization and functions of sequence-similar proteins has become available. On the basis of this new information, an updated version of the annotated chromosome has been generated. Results: The E. coli K-12 chromosome is currently represented by 4,401 genes encoding 116 RNAs and 4,285 proteins. The boundaries of the genes identified in the GenBank Accession U00096 were used. Some protein-coding sequences are compound and encode multimodular proteins. The coding sequences (CDSs) are represented by modules (protein elements of at least 100 amino acids with biological activity and independent evolutionary history). There are 4,616 identified modules in the 4,285 proteins. Of these, 48.9% have been characterized, 29.5% have an imputed function, 2.1% have a phenotype and 19.5% have no function assignment. Only 7% of the modules appear unique to E. coli, and this number is expected to be reduced as more genome data becomes available. The imputed functions were assigned on the basis of manual evaluation of functions predicted by BLAST and DARWIN analyses and by the MAGPIE genome annotation system. Conclusions: Much knowledge has been gained about functions encoded by the E. coli K-12 genome since the 1997 annotation was published. The data presented here should be useful for analysis of E. coli gene products as well as gene products encoded by other genomes.
    Description: This work was supported by NIH grant RO1 RR07861, the NASA Astrobiology Institute grant NCC2-1054, grants from the Edward Mallinckrodt, Jr Foundation and the Sinsheimer Foundation, and NSF grants NSF DBI - 9984882 and NSF IIS - 9996304.
    Keywords: Escherichia coli K-12
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 89280 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © 2003 BioMed Central. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in Genome Biology 4 (2003): 235, doi:10.1186/gb-2003-4-11-235.
    Description: One of the challenges for ‘post-genomic’ biology is the integration of data from many different sources. Two recent studies independently take steps towards this goal for Escherichia coli, using mathematical modeling and a combination of gene expression and protein levels to predict new gene functions and metabolic behaviors.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 65636 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biology Direct 4 (2009): 46, doi:10.1186/1745-6150-4-46.
    Description: Sequence related families of genes and proteins are common in bacterial genomes. In Escherichia coli they constitute over half of the genome. The presence of families and superfamilies of proteins suggest a history of gene duplication and divergence during evolution. Genome encoded protein families, their size and functional composition, reflect metabolic potentials of the organisms they are found in. Comparing protein families of different organisms give insight into functional differences and similarities. Equivalent enzyme families with metabolic functions were selected from the genomes of four experimentally characterized bacteria belonging to separate genera. Both similarities and differences were detected in the protein family memberships, with more similarities being detected among the more closely related organisms. Protein family memberships reflected known metabolic characteristics of the organisms. Differences in divergence of functionally characterized enzyme family members accounted for characteristics of taxa known to differ in those biochemical properties and capabilities. While some members of the gene families will have been acquired by lateral exchange and other former family members will have been lost over time, duplication and divergence of genes and functions appear to have been a significant contributor to the functional diversity of today’s microbes. Protein families seem likely to have arisen during evolution by gene duplication and divergence where the gene copies that have been retained are the variants that have led to distinct bacterial physiologies and taxa. Thus divergence of the duplicate enzymes has been a major process in the generation of different kinds of bacteria.
    Description: This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-08ER64511.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © 2005 Serres and Riley. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The definitive version was published in BMC Genomics 6 (2005): 33, doi:10.1186/1471-2164-6-33.
    Description: Background: Escherichia coli a model organism provides information for annotation of other genomes. Our analysis of its genome has shown that proteins encoded by fused genes need special attention. Such composite (multimodular) proteins consist of two or more components (modules) encoding distinct functions. Multimodular proteins have been found to complicate both annotation and generation of sequence similar groups. Previous work overstated the number of multimodular proteins in E. coli. This work corrects the identification of modules by including sequence information from proteins in 50 sequenced microbial genomes. Results: Multimodular E. coli K-12 proteins were identified from sequence similarities between their component modules and non-fused proteins in 50 genomes and from the literature. We found 109 multimodular proteins in E. coli containing either two or three modules. Most modules had standalone sequence relatives in other genomes. The separated modules together with all the single (un-fused) proteins constitute the sum of all unimodular proteins of E. coli. Pairwise sequence relationships among all E. coli unimodular proteins generated 490 sequence similar, paralogous groups. Groups ranged in size from 92 to 2 members and had varying degrees of relatedness among their members. Some E. coli enzyme groups were compared to homologs in other bacterial genomes. Conclusion: The deleterious effects of multimodular proteins on annotation and on the formation of groups of paralogs are emphasized. To improve annotation results, all multimodular proteins in an organism should be detected and when known each function should be connected with its location in the sequence of the protein. When transferring functions by sequence similarity, alignment locations must be noted, particularly when alignments cover only part of the sequences, in order to enable transfer of the correct function. Separating multimodular proteins into module units makes it possible to generate protein groups related by both sequence and function, avoiding mixing of unrelated sequences. Organisms differ in sizes of groups of sequence-related proteins. A sample comparison of orthologs to selected E. coli paralogous groups correlates with known physiological and taxonomic relationships between the organisms.
    Description: The research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-01ER63202 and by National Aeronautics and Space Administration Astrobiology grant NCC2-1054.
    Keywords: Escherichia coli ; Multimodular proteins
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 382815 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...