ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN14536 , Annual CubeSat Developer''s Workshop; Apr 23, 2014 - Apr 25, 2014; San Luis Obispo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Engineering (General)
    Type: ARC-E-DAA-TN58103 , Gilead Science Inc. Seminar; Jun 22, 2018; Foster City, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-04
    Description: Since Apollo 17 in 1972, NASA has sent no humans or other biological organisms outside of Earth's protective magnetosphere. Recently, NASA has set its sights on human exploration in deep space, with an ambitous plan to put astronauts back on the Moon by 2024 and to eventually land human missions on Mars. Such missions will require significant countermeasures, likely both technological and biomedical, to protect biology from chronic radiation exposure. CubeSats can inform these countermeasures by querying relevant space environments with model organisms.NASA has launched five biological CubeSat missions into low-Earth orbit (LEO). GeneSat-1 was launched in 2006 to study gene expression and increase our knowledge of how spaceflight affects microbes. Similar life-support technologies were then used in PharmaSat and O/OREOS, which launched in 2009 and 2010, respectively. PharmaSat contained optical systems to examine how yeast cells responded to an antifungal treatment. One of O/OREOS payloads, SESLO (Space Environment Survivability of Living Organisms), housed dormant microorganisms, which were rehydrated on orbit to track alterations to growth and metabolism induced by microgravity and radiation. In 2014, NASA launched SporeSat to study the mechanisms of plant cell gravity sensing using lab-on-a-chip devices. Most recently, in 2017, NASA launched EcAMSat (E. coli AntiMicrobial Satellite), which investigated the effects of microgravity on antibiotic resistance of a pathogenic bacterium. Each one of these missions increased our understanding of the biological effects of spaceflight in LEO, while refining technologies and imparting valuable lessons to the next generation of CubeSats.CubeSats housing translational biological models are therefore ideal for defining the hazards of deep space travel, as they can provide critical data over relevant durations. BioSentinel, a next-generation deep-space CubeSat, is planned to launch as a secondary payload on Artemis 1 in 2020. BioSentinel will study the DNA damage response to deep space radiation in yeast.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN75631 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Nov 20, 2019 - Nov 23, 2019; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...