ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2009-11-01
    Description: Variability in daily wintertime [December–February (DJF)] 500-hPa heights on low [L: (6 day)−1] frequencies is examined using 40-yr ECMWF Re-Analysis (ERA-40) data. Leading EOFs of L correspond to planetary-scale teleconnection patterns; those of M to retrograding, eastward-dispersing long waves oriented along great circle routes; and those of H to baroclinic waves in the climatological-mean storm tracks. In the Atlantic sector, EOF 1 of M appears to be embedded in EOF 1 of L. Cross-frequency coupling between L and M exhibits distinctive patterns. In the Atlantic sector the negative polarity of the North Atlantic Oscillation (NAO) with above-normal heights over Greenland is associated with enhanced M variability over Greenland. An analogous relationship is observed in the Pacific sector between an NAO-like pattern and the variance of M over Alaska. Cross-frequency coupling between L and H in both sectors is indicative of a reinforcement of the background flow by the baroclinic waves. Cross-frequency coupling between L and M is responsible for most of the skewness of the anomalies in the 500-hPa height field. Linear wave dynamics evidently play an important role in M. Composites of high amplitude anomalies of contrasting signs over Baffin Bay exhibit similar spatial structures (apart from the sign reversal) and they exhibit a similar evolution, with westward phase propagation and downstream development characteristic of the behavior of Rossby waves. It is argued that teleconnection patterns exhibit memories much longer than the 7–10-day decorrelation time of daily indices formed by projecting unfiltered daily fields onto their spatial patterns.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-01
    Description: Rain on snow (ROS) events are rare in most parts of the circumpolar Arctic, but have been shown to have great impact on soil surface temperatures and serve as triggers for avalanches in the midlatitudes, and they have been implicated in catastrophic die-offs of ungulates. The study of ROS is inherently challenging due to the difficulty of both measuring rain and snow in the Arctic and representing ROS events in numerical weather predictions and climate models. In this paper these challenges are addressed, and the occurrence of these events is characterized across the Arctic. Incidents of ROS in Canadian meteorological station data and in the 40-yr ECMWF Re-Analysis (ERA-40) are compared to evaluate the suitability of these datasets for characterizing ROS. The ERA-40 adequately represents the large-scale synoptic fields of ROS, but too often has a tendency toward drizzle. Using the ERA-40, a climatology of ROS events is created for thresholds that impact ungulate populations and permafrost. It is found that ROS events with the potential to harm ungulate mammals are widespread, but the large events required to impact permafrost are limited to the coastal margins of Beringia and the island of Svalbard. The synoptic conditions that led to ROS events on Banks Island in October of 2003, which killed an estimated 20 000 musk oxen, and on Svalbard, which led to significant permafrost warming in December of 1995, are examined. Compositing analyses are used to show the prevailing synoptic conditions that lead to ROS in four disparate parts of the Arctic. Analysis of ROS in the daily output of a fully coupled GCM under a future climate change scenario finds an increase in the frequency and areal extent of these events for many parts of the Arctic over the next 50 yr and that expanded regions of permafrost become vulnerable to ROS.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...