ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 344-355 
    ISSN: 0006-3592
    Keywords: esterification ; Chromobacterium viscosum ; lipase ; microemulsions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Chromobacterium viscosum (CV) lipase solubilized in water-in-oil (w/o) microemulsions based on the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) have been used for multigram-scale ester synthesis, including the kinetic resolution of a secondary alcohol. The stability of CV lipase in all the CTAB microemulsions studied was excellent and was superior to that observed in aqueous buffer at the same pH and temperature. Kinetic studies were performed using the synthesis of ethylhexadecanoate as a model reaction. Under pseudo-first-order conditions, the synthesis rates were linearlydependent on the enzyme and fatty acid concentrations and the R dependence shows the characteristic bell-shaped curve (where R = [H2O]/[surfactant]). The dependence of enzyme activity toward octyldecanoate synthesis on the pH of the dispersed buffer phase is in marked contrast to that observed for the pH dependence of CV lipase toward p-nitrophenylbutyrate hydrolysis. In the former case, the pH-activity profile is approximately sigmoidal, which may reflect the ionization state of the fatty acid substrate. In the latter case, the pH dependence is minimal at both R = 10 and R = 50, suggesting the enzyme does not experience a changed pH environment. Inclusion of a pH-sensitive probe molecule into those incubations containing fatty acid clearly demonstrates that the probe molecule experiences a changed environment consistent with that expected for the selected buffer. An in situ Fourier transform nuclear magnetic resonance (FT-NMR) assay has been developed which allows continuous monitoring of the esterification reactions, thereby providing an additional means of determining initial rates. The method may be of general value for lipase assays in microemulsions since it may provide, at the same time, information regarding enzyme regioselectivity. © 1995 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: hydrolysis ; esterification ; Humicola lanuginosa ; Rhizomucor miehei ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Humicola lanuginosa lipase (HIL) and Rhizomucor miehei lipase (RrnL), isolated from commercial preparations of Lipolase and Lipozyme, respectively, were solubilized in AOT-stabilized water-in-oil (w/o) microemulsions in n-heptane and aspects of their hydrolysis and condensation activity examined. The temperature dependence of HIL hydrolysis activity in unbuffered R = 10 microemulsions matched very closely that for tributyrin hydrolysis by Lipolase in an aqueous emulsion assay. Apparent activation energies were measured as 13 ± 2 and 15 ± 2 kJ mol / respectively. Condensation activity, however, was essentially independent of temperature over the range 5° to 37°C. The stability of HIL over a 30-day period was very good at all pH levels (6.1, 7.2, 9.3) and R values studied (5, 7.5, 10, 20), except when high pHs and low R values were combined. The excellent stability was reflected by the linearity of the productivity profiles which facilitate system optimization. The temperature dependence of RmL hydrolysis activity toward pNPC4 showed a maximum at 40°C and an apparent Eact = 20 ± 2 kJ mol-1 was calculated based on the linear region of the profile (5° to 40°C). RmL esterification activity showed only a slight dependence on temperature over the studied range (0° to 40°C) and an apparent Eact = 5 ± 1 kJ mol-1 was measured for octyl decanoate synthesis. Both RmL and HIL, therefore, have potential for application in low temperature biotransformations in microemulsion-based media. The stability of RmL over a 30-day period was good in R = 7.5 and R = 10 microemulsions containing pH 6.1 buffer, and this was reflected in the linearity of their respective productivity profiles. RmL stability was markedly poorer at more alkaline pH, however, and proved to be sensitive to relatively small changes in the R value. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 121-131 
    ISSN: 0006-3592
    Keywords: biocalalysis ; microemulsion ; gelatin ; organogel ; lipase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Chromobacterium viscosum (CV) lipase was immobilized in gelatin-containing Aerosol-OT (AOT) microemulsion-based organogels (MBGs). The behavior of this novel, predominantly hydrophobic matrix as an esterification catalyst has been examined. The biocatalyst was most effective when the MBG was granulated to yield gel particles of ∼500 μm diameter, providing a total surface area of ca. 106 mm2 per 10 cm3 of gel. The gel was generally contacted with a solution of the substrate(s) in a hydrocarbon oil. Under most conditions reaction was not diffusion limited. Apparent lipase activity was influenced by certain compositional changes in the MBG, but most significantly when the R value, the mole ratio of water to surfactant, was altered. Higher activities were observed at lower R values. Although gels of lowest R value expressed the highest condensation activity, such formulations were physically unsuitable as immobilization matrices due to their proximity to the gel-solution phase boundary. MBGs of intermediate R values (between 60 and 80) were considered most suitable because they offer relatively high condensation activity and good physical stability. The gelatin concentration also exerted a small but measurable influence on the observed condensation rates. Apparent lipase activity was also influenced to some extent by the nature of the parent hydrocarbon used to prepare the MBG. Higher activities were obtained using formulations derived from isooctane and cyclohexane rather than the n-alkanes. Condensation activities expressed by CV lipase in the MBGs were broadly comparable to those expressed in the analogous parent water-in-oil (w/o) microemulsions. The MBGs functioned effectively in neat substrate solutions, but the condensation activity expressed by the MBGs in a series of successive batch syntheses was adversely affected by the formation and retention of the water coproduct. Selective removal of the water was achieved using a concentrated solution of dry reverse micelles, which resulted in recovery of lost activity. Pretreatment of lipase-containing MBGs resulted in the formation of MBGs with enhanced catalytic properties and modified composing the conventional procedure. © 1997 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 416-427 
    ISSN: 0006-3592
    Keywords: esterification ; hydrophobic organogel ; immobilized enzyme ; 1H-NMR ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Kinetic studies have shown that octyl decanoate synthesis by Chromobacterium viscosum (CV) lipase in sodium bis-2-(ethylhexyl) sulfosuccinate (AOT) water in oil (w/o) microemulsions occurs via the nonsequential (ping-pong) bi bi mechanism. There was evidence of single substrate inhibition by decanoic acid at high concentrations. Initial rate data yielded estimates for acid and alcohol Michaelis constants of ca. 10-1 mol dm-3 and a maximum rate under saturation conditions of ca. 10-3 mol dm-3 s-1 for a lipase concentration of 0.36 mg cm-3. CV lipase immobilized in AOT microemulsion-based organogels (MBGs) was also found to catalyze the synthesis of octyl decanoate according to the ping-pong bi bi mechanism. Reaction rates were similar in the free and immobilized systems under comparable conditions. Initial rates at saturating (but noninhibiting) substrate concentrations were first order with respect to CV lipase concentration in both w/o microemulsions and the MBG/oil systems. Gradients yielded an apparent kcat = 4.4 × 10-4 mol g-1 s-1 in the case of w/o microemulsions, and 6.1 × 10-4 mol g-1 s-1 for CV lipase immobilized in the MBGs. A third system comprising w/o microemulsions containing substrates and gelatin at concentrations comparable to those employed in the MBG formulations, provided a useful link between the conventional liquid microemulsion medium and the solid organogels. The nongelation of these intermediate systems stems from the early inclusion of substrate during a modified preparative protocol. The presence of substrate appears to prevent the development of a percolated microstructure that is thought to be a prerequisite for MBG formation. FT-NMR was employed as a semicontinuous in situ assay procedure. The apparent activity expressed by CV lipase in compositionally equivalent liquid and solid phase gelatin-containing systems was similar. An apparent activation energy of 24 ± 2 kJ mol-1 was determined by 1H-NMR for esterification in gelatin-containing w/o microemulsions. This value agrees with previous determinations for CV lipase-catalyzed synthesis of octyl decanoate in “conventional” w/o microemulsions and MBG/oil systems. The similarities in lipase behavior are consistent with the claim, based largely on structural measurements, that the physico-chemical properties of the lipase-containing w/o microemulsion are to a large extent preserved on transformation to the daughter organogel. The close agreement of apparrent activation energies suggests that substrate mass transfer is not rate determining in the three studied systems. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54:416-427, 1997.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3592
    Keywords: hydrolysis ; esterification ; Humicola lanuginosa ; Rhizomucor miehei ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Lipolase and Lipozyme are produced in large quantities (as a result of genetic engineering and overexpression) for the detergents market and provide a cheap source of highly active biocatalysts. Humicola lanuginosa lipase (HIL) and Rhizomucor miehei lipase (RmL) have been isolated in partially purified form from commercial preparations of Lipolase and Lipozyme, respectively. These lipases were solubilized in Aerosol-OT (AOT)-stabilized water-in-oil (w/o) microemulsions in n-heptane. HIL and RmL activity in these microemulsions was assayed by spectrophotometric measurement of the initial rate of p-nitophenyl butyrate hydrolysis, and by chromatographic determination of the initial rate of octyl decanoate synthesis from 1-octanol and decanoic acid. The hydrolytic activity of HIL in microemulsions measured as a function of buffer pH prior to dispersal, followed a sigmoidal profile with the highest activities observed at alkaline pHs. This broadly matches the pH-activity profile for tributyrin hydrolysis by Lipolase in an aqueous emulsion assay. The hydrolytic activity of RmL in the same microemulsions, measured as a function of pH, gave a bell-shaped profile with a maximum activity at pH 7.5. Again, the observed pH-activity profile was similar to that reported for a purified RmL in a tributyrin-based aqueous emulsion assay. In contrast, the esterification activity exhibited by both HIL and RmL in AOT microemulsions over the available range pH 6.1 to 10.4, decreases as the pH increases, most likely reflecting the effect of substrate ionization. The dependence of the hydrolytic and condensation activity of HIL on R, the mole ratio of water to surfactant, were similar with both profiles exhibiting a maximum at R = 5. The hydrolytic and esterification activities of RmL followed similar R-dependent profiles, but the profiles in this case exhibited a maximum at R = 10. The water activities at these R values were directly measured as 0.78 and 0.9, respectively. Measured water activities were unperturbed by the presence of lipase at the concentrations used in these studies. © 1995 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Advanced Materials 5 (1993), S. 608-619 
    ISSN: 0935-9648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-03-01
    Print ISSN: 0743-7463
    Electronic ISSN: 1520-5827
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-09-01
    Print ISSN: 1047-8477
    Electronic ISSN: 1095-8657
    Topics: Biology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-01-19
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-12-01
    Print ISSN: 0927-7765
    Electronic ISSN: 1873-4367
    Topics: Biology , Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...