ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2018-04-01
    Print ISSN: 0025-3227
    Electronic ISSN: 1872-6151
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-15
    Description: Barrier island transgression is influenced by the alongshore variation in beach and dune morphology, which determines the amount of sediment moved landward through washover. While several studies have demonstrated how variations in dune morphology affect island response to storms, the reasons for that variation and the implications for island management remain unclear. This paper builds on previous research by demonstrating that the framework geology can influence beach and dune morphology asymmetrically alongshore. The influence of relict paleo-channels on beach and dune morphology on Padre Island National Seashore, Texas was quantified by isolating the long-range dependence (LRD) parameter in autoregressive fractionally-integrated moving average (ARFIMA) models. ARFIMA models were fit across all scales and a moving window approach was used to examine how LRD varied with computational scale and location along the island. The resulting LRD matrices were plotted by latitude to place the results in context of previously identified variations in the framework geology. Results indicate that the LRD is not constant alongshore for all surface morphometrics. Many flares in the LRD plots correlate to relict infilled paleo-channels in the framework geology, indicating that the framework geology has a significant influence on the morphology of PAIS. Barrier island surface morphology LRD is strongest at large paleo-channels and decreases to the north. The spatial patterns in LRD surface morphometrics and framework geology variations demonstrate that the influence of paleo-channels in the framework geology can be asymmetric where the alongshore sediment transport gradient was unidirectional during island development. The asymmetric influence of framework geology on coastal morphology has long-term implications for coastal management activities because it dictates the long-term behavior of a barrier island. Coastal management projects should first seek to understand how the framework geology influences coastal processes in order to more effectively balance long-term natural variability with short-term societal pressure.
    Electronic ISSN: 2196-6338
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-27
    Description: Barrier island transgression is influenced by the alongshore variation in beach and dune morphology, which determines the amount of sediment moved landward through wash-over. While several studies have demonstrated how variations in dune morphology affect island response to storms, the reasons for that variation and the implications for island management remain unclear. This paper builds on previous research by demonstrating that paleo-channels in the irregular framework geology can have a directional influence on alongshore beach and dune morphology. The influence of relict paleo-channels on beach and dune morphology on Padre Island National Seashore, Texas, was quantified by isolating the long-range dependence (LRD) parameter in autoregressive fractionally integrated moving average (ARFIMA) models, originally developed for stock market economic forecasting. ARFIMA models were fit across ∼250 unique spatial scales and a moving window approach was used to examine how LRD varied with computational scale and location along the island. The resulting LRD matrices were plotted by latitude to place the results in the context of previously identified variations in the framework geology. Results indicate that the LRD is not constant alongshore for all surface morphometrics. Many flares in the LRD plots correlate to relict infilled paleo-channels, indicating that the framework geology has a significant influence on the morphology of Padre Island National Seashore (PAIS). Barrier island surface morphology LRD is strongest at large paleo-channels and decreases to the north. The spatial patterns in LRD surface morphometrics and framework geology variations demonstrate that the influence of paleo-channels can be asymmetric (i.e., affecting beach–dune morphology preferentially in one direction alongshore) where the alongshore sediment transport gradient was unidirectional during island development. The asymmetric influence of framework geology on coastal morphology has long-term implications for coastal management activities because it dictates the long-term behavior of a barrier island. Coastal management projects should first seek to assess the framework geology and understand how it influences coastal processes in order to more effectively balance long-term natural variability with short-term societal pressure.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Highlights • Barrier island beach and dunes can inherit morphology from framework geology. • The influence of buried paleo-channels is affected by their scale and orientation. • Non-linear interaction occurs between geology and smaller-scale coastal processes. • Framework geology is key to predicting barrier island response to sea level rise. • Fine-scale variability in dune height is greater landward of buried paleo-channels. Abstract Barrier island response and recovery to storms, and island transgression with relative sea level rise, can be influenced by the framework geology. The influence of framework geology on barrier island geomorphology has previously been examined in areas where the framework is rhythmic alongshore or consists of an isolated paleo-channel or headland. The purpose of this paper is to examine the influence of framework geology on beach and dune geomorphology at Padre Island National Seashore (PAIS), Texas, USA, where the framework geology is variable alongshore. Alongshore beach and dune morphometrics and offshore bathymetric profiles were extracted from a combined topography and bathymetry digital elevation model (DEM) using an automated approach along the ~100 km study area, and an electromagnetic induction (EMI) survey was used to map the subsurface framework geology. Wavelet decomposition, Global Wavelet (GW), and bicoherence analyses were used to test for spatial relationships between and within the extracted alongshore metrics. GW trendlines demonstrate that beach and dune morphometrics are structurally controlled. Hotspots in wavelet coherence plots between framework geology and alongshore island morphometrics indicate that the paleo-channels dissecting the island influence beach and dune morphology, with large dunes found in the area directly landward of the paleochannels. Bicoherence analysis of alongshore beach and dune morphometrics indicates that low-frequency oscillations due to framework geology interact with higher-frequency oscillations, with greater small-scale variability in the dune line directly landward of the paleo-channels. These results suggest that the paleo-channels of PAIS non-linearly influence beach and dune morphology, which in turn alters the response of the island to storms and sea level rise. It is argued that an understanding of the framework geology is key to predicting island response to sea level rise and framework geology needs to be included in barrier island models. This paper demonstrates that an irregular framework geology influences small-scale coastal processes, and creates interactions across scales that influence beach and dune morphology and affects barrier island response to storms and sea level rise.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Barrier island transgression is influenced by the alongshore variation in beach and dune morphology, which determines the amount of sediment moved landward through wash-over. While several studies have demonstrated how variations in dune morphology affect island response to storms, the reasons for that variation and the implications for island management remain unclear. This paper builds on previous research by demonstrating that paleo-channels in the irregular framework geology can have a directional influence on alongshore beach and dune morphology. The influence of relict paleo-channels on beach and dune morphology on Padre Island National Seashore, Texas, was quantified by isolating the long-range dependence (LRD) parameter in autoregressive fractionally integrated moving average (ARFIMA) models, originally developed for stock market economic forecasting. ARFIMA models were fit across ∼250 unique spatial scales and a moving window approach was used to examine how LRD varied with computational scale and location along the island. The resulting LRD matrices were plotted by latitude to place the results in the context of previously identified variations in the framework geology. Results indicate that the LRD is not constant alongshore for all surface morphometrics. Many flares in the LRD plots correlate to relict infilled paleo-channels, indicating that the framework geology has a significant influence on the morphology of Padre Island National Seashore (PAIS). Barrier island surface morphology LRD is strongest at large paleo-channels and decreases to the north. The spatial patterns in LRD surface morphometrics and framework geology variations demonstrate that the influence of paleo-channels can be asymmetric (i.e., affecting beach–dune morphology preferentially in one direction alongshore) where the alongshore sediment transport gradient was unidirectional during island development. The asymmetric influence of framework geology on coastal morphology has long-term implications for coastal management activities because it dictates the long-term behavior of a barrier island. Coastal management projects should first seek to assess the framework geology and understand how it influences coastal processes in order to more effectively balance long-term natural variability with short-term societal pressure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-11-01
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...