ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: see Abstract Volume
    Description: Istituto Nazionale di Geofisica e Vulcanologia, Italy (INGV) Centre National de la Recherche Scientifique (CNRS) ExxonMobil Upstream Research Company
    Description: Unpublished
    Description: Erice, Italy
    Description: open
    Keywords: rock physics, geomechanics, thermo-hydro-mechanical coupling, natural hazards ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006
    Keywords: CC 4 ; Coordinating Committee ; Continental Drilling ; ICDP
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1999-10-18
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-09
    Description: Induced seismicity exhibits diverse source mechanisms that are often difficult to constrain for small events. Here, we use data from the in-mine seismic network, the Natural Earthquake Laboratory in South African Mines network, and a temporary Program for the Array Seismic Studies of the Continental Lithosphere deployment in TauTona Mine, South Africa, to determine full moment tensors of 100 mining-induced earthquakes in the magnitude range –2.7〈 M w 〈2.5. Ground displacement derived from velocity and acceleration data show clear near-field effects, indicating that the lowest frequencies are well resolved. Phase amplitudes of between 11 and 77 picks per event were inverted to obtain the six independent moment tensor components. The quality of each moment tensor solution is quantified using (1) the misfit between observed and synthetic waveforms, (2) bootstrap resampling to estimate uncertainties, and (3) the F -test to determine the need for including an isotropic component with an extra degree of freedom in the solution. The results indicate 82% of the events have well-constrained solutions, and 45% of the well-constrained events require an isotropic source term. Throughout the magnitude range, both deviatoric and implosive mechanisms are observed, with implosive ratios of volume change to shear deformation (V/ ) of –1.03 to –0.15. Two explosive events are observed at M w –0.5 and –0.2, withV/ =0.15 and 0.51, respectively. For the largest events, we determine maximum slip and apparent stress ( a ) and find values consistent with those of natural tectonic earthquakes, with 0.1≤ a ≤9.2 MPa. Our results support previous speculation on the nature of isotropic components of mining-induced earthquakes, in which events of all sizes begin as shear failure that may intersect a void (tunnel or stope) and cause collapse, whereas only small events result in explosive sources.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-09-01
    Description: The aim of part 2 is to understand the development of complex hydraulic fractures (HFs) that are commonly observed in the field and in experiments but are not explained by most models. Our approach uses finite element simulations and a numerical rheology developed in part 1 to model damage fracturing, the fracturing process by damage propagation in a rock with elastic–plastic damage rheology. Using this rheology and a dynamic solution technique, we investigate the effect of far-field stresses and pressure distribution in the fracture on the geometric complexity of the fractures. The model is for the vertical propagation of an HF segment into an overlying bed located far from borehole effects. The layer is 2.3 m (7.5 ft) tall, has elastic–plastic damage rheology, and contains a 0.3-m (1-ft)–tall initial vertical fracture. Vertical and horizontal tectonic loads of 50 MPa (7252 psi) and 10 to 45 MPa (1450–6527 psi) are established, and then an internal fracture pressure of 10 MPa/s (1450 psi/s) is applied until the layer fails. The simulated fracturing is sensitive to the stress state and generated patterns range from single straight fractures to treelike networks. Reducing differential stress increases the injection pressure required to fracture and promotes off-plane damage, which increases fracture complexity. Consecutive periods of nonuniform weakening followed by unstable rupture generate multiple branches and segments. We find that the processes that form HF complexity occur under a range of in-situ reservoir conditions and are likely to contribute to complex far-field fracture geometry and enhanced network connectivity.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association of Petroleum Geologists (AAPG)
    Publication Date: 2012-09-01
    Description: In this series of studies, we develop a numerical tool for modeling finite deformation of reservoir rocks. We present an attempt to eliminate the main limitations of idealized methods, for example, elastic or kinematic, that cannot account for the complexity of rock deformation. Our approach is to use rock mechanics experimental data and finite element models (Abaqus). To generate realistic simulations, the present numerical rheology incorporates the dominant documented deformation modes of rocks: (1) rock mechanics experimental observations, including finite strength, inelastic strain hardening, strength dependence on confining pressure, strain-induced dilation, pervasive and localized damage, and local tensile or shear failure without macroscopic disintegration; and (2) field observations, including large deformation, distributed damage, complex fracture networks, and multiple zones of failure. Our analysis starts with an elastic–plastic damage rheology that includes pressure-dependent yield criteria, stiffness degradation, and fracturing via a continuum damage approach, using the Abaqus materials library. We then use experimental results for Berea Sandstone in two configurations, four-point beam and dog-bone triaxial, to refine and calibrate the rheology. We find that damage and fracturing patterns generated in the numerical models match the experimental features well, and based on these observations, we define damage fracturing, the fracturing process by damage propagation in a rock with elastic–plastic damage rheology. In part 2, we apply this rheology to investigate fracture propagation at the tip of a hydrofracture.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association of Petroleum Geologists (AAPG)
    Publication Date: 2014-10-28
    Description: We investigate the hydraulic fracturing process by analysis of the associated microseismicity. In part 1, we recognized double-couple and hybrid microseismic events and their fault plane orientations. Critical stress (instability) and stress inversion techniques were used to assess fracture activation conditions. In part 2, we apply results from the tensile source model to investigate how activated faults relate to the stress state and geologic setting. We assess potential mechanisms for induced microseismicity including leakoff and diffuse pressurized fracture network flow, stress shadowing adjacent to large parent hydraulic fractures, and crack tip stress perturbations. Data are from the Mississippian Barnett Shale, Texas, and include microseismic events from sequential pumping stages in two adjacent horizontal wells that were recorded in two downhole monitor wells, as well as operations, wellbore-derived stress, and natural fracture data. Results point to activation of inclined faults whose orientation is dominantly northeast–southwest and vertical north–south faults. The activation stress states for a range of modeling scenarios show stress rotation, decreased mean stress, and increased deviatoric stress. This stress state cannot be explained by sidewall leakoff in the stress shadow region adjacent to hydrofractures, but is consistent with hybrid and shear activation obliquely ahead of pressurized fractures. Information about hydrofracture evolution and operationally related dynamic stress change is obscured by geomechanical heterogeneity that is likely geologic in nature. The most compelling observation is that the most highly misoriented microseismic faults occur in the same vicinity as a carbonate-dominated submarine fan feature that was previously expected to act as a minor fracture barrier.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-28
    Description: We investigate the geomechanical behavior of hydraulic-fracturing-induced microseismicity. Microseismic events are commonly used to discern stimulation patterns and hydraulic fracture evolution; however, techniques beyond fracture mapping are required to explain the mechanisms of microseismicity. In this series we present an approach to combine seismological and geomechanical techniques to investigate how microseismicity relates to propagating hydrofractures as well as existing natural fractures and faults. Part 1 describes the first analysis step, which is to characterize the microseismic events by their source parameters, focal mechanisms, and fault-plane orientations. These parameters are used to determine the mechanical conditions responsible for activation of discrete populations or subpopulations of microseismic events that then can be interpreted in their geological and operational context. First, we compare microseismic fault-plane populations from a Mississippian Barnett Shale, Texas data set that are determined using a traditional double-couple model (shear only) with a tensile source model (hybrid events), which may be more suitable for hydraulic fracturing conditions. Second, we employ a new method to distinguish fault planes from auxiliary planes using iterative stress inversion and critical stress (instability) selection criteria. The result is an enhanced microseismic characterization that includes geomechanical parameters such as slip tendency and local activation stress state during the operation. Using this approach on the Barnett Shale data, two microseismic fault sets are resolved: an inclined northeast–southwest set with dominant shear, and a vertical north–south set with more hybrid behavior. The results are used in part 2 to further investigate the heterogeneity of the stimulations and to compare models for microseismic activation.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-29
    Description: Slip during large earthquakes occurs along faults that are hundreds of kilometers long, yet the dynamic weakening that drives these earthquakes is controlled by nano- to micro-scale frictional processes. We analyzed these processes along experimental faults that slipped at rates approaching seismic velocity, and which displayed intense dynamic weakening of 50%–70%. Sheared fault surfaces were extracted, and then atomic force microscopy was used to (1) measure friction on a sub-micron scale, and (2) determine the three-dimensional morphology at the nano- to micro-scale. The sheared surfaces developed a prevalent anisotropy with a weaker and smoother axis along the slip direction. The nanoscale friction coefficient correlates well with sheared-surface roughness: the friction coefficients dropped only on surfaces with root mean square (RMS) values of 〈100 nm, while rougher surfaces showed no weakening. Our analysis indicates that slip smoothing at high slip velocities can be an effective mechanism of dynamic weakening.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1998-06-01
    Print ISSN: 1365-1609
    Electronic ISSN: 1873-4545
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...