ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-10-01
    Print ISSN: 0921-8181
    Electronic ISSN: 1872-6364
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1976-01-01
    Description: Total impurity content of salt plus carbon dioxide was estimated as a function of grain size and depth in polycrystalline ice samples cored from a temperate glacier by measuring the electrical conductivity of the melt with air excluded. Conductivity decreased with increasing depth and grain size and ranged from × 10-5to 0.4 × 10-5Ω-1m-1at 0°C. The conductivity of pure water at 0°C is 0.1 × 10-5Ω-1m-1Studies of the configuration of the three phases and ofin situtemperature were also made. Thermodynamic constraints indicate that these impurities are probably concentrated as follows: about 5 mol m-3in the liquid in the veins along three-grain intersections, roughly 1 × 10-6mol m-2associated with grain-boundary area exclusive of veins, and about 0.7 × 10-3mol m-3in volume exclusive of veins and grain boundaries. The last of these categories seems to account for most of the impurities in coarse ice (grain size about 20 mm), but all three categories seem significant in fine ice (grain size about 2 mm). Differences in bulk impurity content possibly indicate different histories of flushing by water.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1976-01-01
    Description: Gas bubbles in core samples from the Blue Glacier, Washington, were observed to be partially filled with liquid. The time and spatial dependence of liquid content in the bubbles demonstrates that thein situliquid content of the bubbles was small and liquid appeared in the bubbles as a consequence of heat flow into the sample after collection. An effective bulk heat capacity for wet bubbly ice is derived and used to analyze the relaxation process and it is shown that the warming of samples is controlled by an effective heat capacity two or more orders of magnitude larger than for pure ice. The relaxation process presents a practical difficulty for measurement ofin situwater content from core samples and the behavior of the bubbles indicates that at positions in a temperate glacier where bubbles have pressure in excess of the ice stress, bubbles may control the ice temperature and significantly restrict water flow through veins.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1971-01-01
    Description: A method for the determination of the three-dimensional velocity field in a glacier is described, Measurements in three or more bore holes arranged in an appropriate array are needed for its application. Surface motion measured by triangulation and tape measure, bore-hole profiles given by inclinometry, and the geometry of the bed are all considered simultaneously in order to determine the velocity field. The basic assumption is that velocity between the bore holes can be represented by suitable interpolation based on the measurements in the holes. Ice displacement parallel to bore holes is calculated indirectly from incompressibility and the constraint that velocity normal to the bed be zero. As an example, the method is applied to an array of 9 bore holes in Athabasca Glacier.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-01-01
    Description: We synthesize previously published remote-sensing observations, radar data and model output to obtain a ~1000 year ice flow history for the Siple Coast ice-stream system in West Antarctica to investigate the timing and magnitude of changes in mass flux. The synthesized history shows significant short-term variability in ice-stream shear margin and grounding line position due to internal variability of the coupled system. The chronology highlights the interplay between adjacent ice streams, which implies that the behavior of any individual ice stream should not be examined in isolation. Furthermore, individual events cannot be fully interpreted without an understanding of the broad-scale, long-term variability in the ice sheet. In the context of this millennium-scale history, we interpret the relatively recent stagnation of Kamb Ice Stream (KIS) as just one stage in the thermodynamic cycle of an ice stream in this region. The changes in mass balance that result from the KIS stagnation may thus be viewed as century-scale 'noise' relative to the longer-term trend. Understanding and characterizing this noise is a necessary step before accurate model-based predictions of ice-sheet mass balance for the next century can be made.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-01-01
    Description: Characteristics of the hydrology and motion of Black Rapids and Fels Glaciers, Alaska, were observed from 1986 to 1989. Hydrological measurements included stage, electrical conductivity and suspended-sediment concentration in the discharge stream of each glacier, and were made at 0.5–1 h intervals continuously through most of the melt seasons. Variations in the glacier speed were monitored through the full year at a number of locations along the length of each glacier using time-lapse photography (1 d time resolution), strain meters (0.5–1 h resolution) and seismometers set up to count acoustic emissions. Both glaciers show similar seasonal, diurnal and short-term event changes in hydrological discharges and ice speed. The hydrological behavior is analyzed in terms of a “fast” sub-system composed of surface streams, moulins and large tunnels with discharge that responds rapidly and a “slow” sub-system composed of heterogeneous small passageways through the ice and distributed over the bed that maintain approximately uniform discharge over a day. The liming and amplitude of water discharge in the diurnal cycle indicate that roughly 10–40% of the water is routed directly into the fast system. The remaining 90–60% of the water enters the slow system. Dilution of the solute discharged from the slow system by the variable discharge in the fast system results in changes in water discharge and solute concentration that are approximately equal in relative amplitude and inversely related. A small time lag from discharge maximum (minimum) to solute minimum (maximum) suggests that the fast system is confined to roughly the lowermost 30–40% of the full glacier length. The residence time of water in the fast system is short compared to 1 d. The slow system contains both short- and long-residence time passages. Characteristics of the diurnal cycles are somewhat variable through the melt season, but no systematic evolutionary patterns were discerned even though large changes in the mean discharges of water and solutes occur, which suggests parallel evolution of the variables that control the response of the fast system. Events were characterized by contemporaneous increases in suspended-sediment concentration in the discharge water and distinct changes in straining on the glaciers. Events caused by-increases in melt or precipitation related to weather and events related to release from reservoirs internal to the glaciers could be distinguished based on the changes in electrical conductivity of the discharge water. The correlated changes in sediment discharge and motion of the glaciers indicate that the events were associated with temporary modifications of the slow passages distributed over the bed that allowed enhanced sliding and access of basal water flow to erosion products. Hydrological differences between Black Rapids and Fels Glaciers can be explained by differences in the size of the glaciers. If there is a difference in bed structure that explains the difference in dynamics (surge — Black Rapids Glacier - versus non-surge - Fels Glacier), it does not affect the hydrological parameters that were observed.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1976-01-01
    Description: Gas bubbles in core samples from the Blue Glacier, Washington, were observed to be partially filled with liquid. The time and spatial dependence of liquid content in the bubbles demonstrates that the in situ liquid content of the bubbles was small and liquid appeared in the bubbles as a consequence of heat flow into the sample after collection. An effective bulk heat capacity for wet bubbly ice is derived and used to analyze the relaxation process and it is shown that the warming of samples is controlled by an effective heat capacity two or more orders of magnitude larger than for pure ice. The relaxation process presents a practical difficulty for measurement of in situ water content from core samples and the behavior of the bubbles indicates that at positions in a temperate glacier where bubbles have pressure in excess of the ice stress, bubbles may control the ice temperature and significantly restrict water flow through veins.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1971-01-01
    Description: Measurements of ice deformation at the surface and at depth in the Athabasca Glacier, Canada, reveal for the first time the pattern of flow in a nearly complete cross-section of a valley glacier, and make it possible to test the applicability of experimental and theoretical concepts in the analysis of glacier flow. Tilting in nine bore holes (eight holes essentially to the bottom at depth about 300 m) was measured with a newly developed electrical inclinometer. The new instrument permitted bore-hole configurations to be determined with greater speed and accuracy than possible with earlier methods. The measurements define the distribution of the velocity vector and the strain-rate tensor over about 70% of the area of the glacier cross-section.The main longitudinal component of flow has the following general features: (1) basal sliding velocity which exceeds 70% of the surface velocity over half of the width of the glacier, (2) marginal sliding velocity (not more than a few meters per year) much less than basal sliding velocity at the center-line (about 40 m a-1), (3) marginal shear strain-rate near the valley walls two to three times larger than the basal shear strain-rate near the center-line (0.1 a-1).The observed longitudinal flow is significantly different from that expected from theoretical analysis of flow in cylindrical channels (Nye, 1965). The relative strength of marginal and basal shear strain-rate is opposite to that expected from theory. In addition, the longitudinal flow velocity averaged over the glacier cross-section (which determines the flux of ice transported) is larger by 12% than the average flow velocity seen at the glacier surface, whereas it would be essentially the same if the theoretical prediction were correct. These differences are caused to a large extent by the contrast between the actual distribution of sliding velocity and the constant sliding velocity for which the theoretical analysis holds. The observed relation between marginal and basal sliding velocity is probably a general flow feature in valley glaciers, and may be caused by lateral variation of water pressure at the ice-rock contact. The observed pattern of longitudinal velocity over the section also shows in detail certain additional features incompatible with the theoretical treatment, even after the difference in boundary conditions (distribution of sliding velocity) is taken into account.Longitudinal strain-rate (a compression of about 0.02 a-1at the surface) decreases with depth, becoming nearly o at the bed in the center of the glacier, which confirms a prediction by Savage and Paterson (1963). The depth variation cannot be explained completely by overall bending of the ice mass as a result of a longitudinal gradient in the curvature of the bed, and is at variance with existing theories, which require the longitudinal strain-rate to be constant with depth.Motion transverse to the longitudinal flow occurs in a roughly symmetric pattern of diverging margin-ward flow, with most of the lateral transport occurring at depth in a fashion reminiscent of extrusion flow. The observed lateral velocities averaged over depth (up to 1.9 m a-1) are compatible with the lateral flux required to maintain equilibrium of the marginal portions of the glacier surface under ablation (about 3.7 m of ice per year) and are driven by the convex lateral profile of the ice surface.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-01-01
    Description: Surface-based ice-penetrating radar profiles were made across the active north margin (the Snake) of the upper part of Whillans Ice Stream (formerly Ice Stream B, branch B2), West Antarctica, at three locations. Low frequency (about 2 MHz) and the ground deployment of the radar allowed penetration through the near-surface zone of fracturing to detect internal layering and bed reflection characteristics on continuous profiles spanning from the slow-moving ice of Engelhardt Ridge well into the chaotic zone of the shear margin. Internal layers were tracked beneath the chaotic zone, where they are warped but remain continuous. The energy returned from internal layers showed no systematic changes associated with the transition from the undisturbed surface of the slow-moving ice into the fractured surface of the shear margin, thus indicating little effect from the surface crevasses on the penetration of the radar signal. Based on this calibration of the near-surface effects and corrections for path length, spreading and attenuation, we examine the spatial variation of bed reflectivity. Low bed reflectivity found under Engelhardt Ridge extends under the chaotic zone of the margin into fast-moving ice. We argue that the fast motion in a band along the margin is mediated by processes other than deformation of thick dilated till that is the source of lubrication allowing fast motion in the interior of the ice stream.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-01-01
    Description: Satellite images of Kamb Ice Stream (formerly Ice Stream C), West Antarctica, reveal several long, curved linear features (lineations) oriented sub-parallel to the ice-flow direction. We use ground-based radar to characterize the internal layer stratigraphy of these lineations and the terrains that they bound. Some lineations are relict ice-stream shear margins, identified by hyperbolic diffractors near the surface (interpreted to be buried crevasses) and highly disturbed internal layers at depth. Satellite images show another set of lineations outside the relict margins that wrap around the ends of the surrounding inter-ice-stream ridges. Internal layers beneath these lineations are downwarped strongly into a syncline shape. The internal stratigraphy of the terrain between these lineations and the relict margins is characterized by deep hyperbolic line diffractors. Our preferred hypothesis for the origin of this terrain is that it was floating sometime in the past; the deep hyperbolas are interpreted to be basal crevasses, and the strongly downwarped internal layers mark the position of a relict grounding line. Our study shows that lineations and intervening terrains have different internal layer characteristics implying different origins. Differentiation between these features is not possible using satellite images alone.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...