ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Process Safety Progress 12 (1993), S. 143-146 
    ISSN: 1066-8527
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: This paper discusses the procedure developed for simulating water sprays at a reduced scale (i.e., physical modeling) and, more impotantly, compares the model spray characterstics to corresponding full scale spray characteristics. An ideal physically modeled spray would simulate actual spray momentum, water volume flow rate, air entrainment rate, discharge water pressure, spray angle, spray pattern and drop size distribution. Full scale measurements or estimates of air discharge velocity, momentum, entrainment rate and drop size distributions were obtained for two types of sprays at two discharge pressures, various spray angles and at a 500 gpm flow rate. Physical modeling was conducted to simulate the full scale nozzles at a 1:50 scale reduction using commercially available spray nozzles. Measurements of spray momentum, volume flow rate and air entrainment rate were obtined for a subset of spray angles used in the full scale testing. Particle size distribution was not measured since it was considered of secondary importance in the simulation. The results of the study showed that model and full scale momentum, volume flow rate and air entrainment rates compared well with corresponding full scale observations (i.e., within 10 percent for momentum, 20 percent for volume flow rate and 25 percent for air entrainment rate). The results indicate that the method used for simulating water sprays is valid and that the model sprays adequately simulate the mechanical action of full scale sprays on vapor clouds. The results provide evidence that physical modeling can be used to evaluate the effectiveness of water sprays as a mitigation technique.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-01-01
    Print ISSN: 0167-6105
    Electronic ISSN: 1872-8189
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...