ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2001-04-01
    Print ISSN: 0818-9641
    Electronic ISSN: 1440-1711
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-08-01
    Description: Bone marrow from animals treated with 5-fluorouracil (5FU) competes equally with normal marrow when assessed in vivo in an irradiated mouse, but shows markedly defective engraftment when transplanted into noncytoablated hosts. Using Southern Blot analysis and a Y-chromosome specific probe, we determined the level of engraftment of male donor cells in the bone marrow, spleen, and thymus of unprepared female hosts. We have confirmed the defective engraftment of marrow harvested 6 days after 5FU (FU-6) and transplanted into unprepared hosts and shown that this defect is transient; by 35 days after 5FU (FU-35), engraftment has returned to levels seen with normal marrow. FU-6 marrow represents an actively cycling population of stem cells, and we hypothesize that the cycle status of the stem cell may relate to its capacity to engraft in the nonirradiated host. Accordingly, we have evaluated the cycle status of engrafting normal and FU-6 marrow into normal hosts using an in vivo hydroxyurea technique. We have shown that those cells engrafting from normal marrow and over 70% of the cells engrafting from FU-6 marrow were quiescent, demonstrating no killing with hydroxyurea. We have also used fluorescent in situ hybridization (FISH) analysis with a Y-chromosome probe and demonstrated that normal and post-5FU engraftment patterns in peripheral blood were similar to those seen in bone marrow, spleen, and thymus. Altogether these data indicate that cells engrafting in normal, unprepared hosts are dormant, and the defect that occurs after 5FU is concomitant with the induction of these cells to transit the cell cycle.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-01-01
    Description: In vitro incubation of bone marrow cells with cytokines has been used as an approach to expand stem cells and to facilitate retroviral integration. Expansion of hematopoietic progenitor cells has been monitored by different in vitro assays and in a few instances by in vivo marrow renewal in myeloablated hosts. This is the first report of studies, using two competitive transplant models, in which cytokine-treated cells, obtained from nonpretreated donors (eg, 5-fluorouracil), were competed with normal cells. A basic assumption is that the expansion of progenitors assayed in vitro as high- and low-proliferative potential colony-forming cells (HPP- and LPP-CFCs) indicates an expansion of stem cells which will repopulate in vivo. This study shows that culture of marrow cells with four cytokines (stem cell factor, interleukin-3 [IL-3], IL-6, IL-11) induces significant expansion and proliferation of HPP-CFC and LPP-CFC. Cell-cycle analysis showed that these hematopoietic progenitors were induced to actively cell cycle by culture with these cytokines. In the first competitive transplant model, which uses Ly5.2/Ly5.1 congenic mice, cytokine-cultured Ly5.2 cells competed with noncultured Ly5.1 cells led to 5% +/- 1% engraftment at 12 weeks and to 4% +/- 2% engraftment at 22 weeks posttransplantation for the cytokine exposed cells. Noncultured Ly5.2 cells competed with cultured Ly5.1 cells led to 70% +/- 1% engraftment at 12 weeks and to 93% +/- 2% engraftment at 22 weeks posttransplantation. In the second model, which uses BALB/c marrow of opposite genders, cultured male cells lead to 13% +/- 9% engraftment at 10 weeks and 2% +/- 1% engraftment at 14 weeks posttransplantation; noncultured male cells lead to 70% +/- 2% and 95% +/- 2% engraftment at 10 and 14 weeks posttransplantation, respectively. Data presented here from two different competitive transplant studies show a defect of cytokine expanded marrow related to cell cycle activation which manifests as defective long-term repopulating capability in irradiated host mice. The engraftment defect is more profound at longer time intervals, suggesting that the most striking effect may be on long-term repopulating cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-08-01
    Description: Bone marrow from animals treated with 5-fluorouracil (5FU) competes equally with normal marrow when assessed in vivo in an irradiated mouse, but shows markedly defective engraftment when transplanted into noncytoablated hosts. Using Southern Blot analysis and a Y-chromosome specific probe, we determined the level of engraftment of male donor cells in the bone marrow, spleen, and thymus of unprepared female hosts. We have confirmed the defective engraftment of marrow harvested 6 days after 5FU (FU-6) and transplanted into unprepared hosts and shown that this defect is transient; by 35 days after 5FU (FU-35), engraftment has returned to levels seen with normal marrow. FU-6 marrow represents an actively cycling population of stem cells, and we hypothesize that the cycle status of the stem cell may relate to its capacity to engraft in the nonirradiated host. Accordingly, we have evaluated the cycle status of engrafting normal and FU-6 marrow into normal hosts using an in vivo hydroxyurea technique. We have shown that those cells engrafting from normal marrow and over 70% of the cells engrafting from FU-6 marrow were quiescent, demonstrating no killing with hydroxyurea. We have also used fluorescent in situ hybridization (FISH) analysis with a Y-chromosome probe and demonstrated that normal and post-5FU engraftment patterns in peripheral blood were similar to those seen in bone marrow, spleen, and thymus. Altogether these data indicate that cells engrafting in normal, unprepared hosts are dormant, and the defect that occurs after 5FU is concomitant with the induction of these cells to transit the cell cycle.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-01-01
    Description: In vitro incubation of bone marrow cells with cytokines has been used as an approach to expand stem cells and to facilitate retroviral integration. Expansion of hematopoietic progenitor cells has been monitored by different in vitro assays and in a few instances by in vivo marrow renewal in myeloablated hosts. This is the first report of studies, using two competitive transplant models, in which cytokine-treated cells, obtained from nonpretreated donors (eg, 5-fluorouracil), were competed with normal cells. A basic assumption is that the expansion of progenitors assayed in vitro as high- and low-proliferative potential colony-forming cells (HPP- and LPP-CFCs) indicates an expansion of stem cells which will repopulate in vivo. This study shows that culture of marrow cells with four cytokines (stem cell factor, interleukin-3 [IL-3], IL-6, IL-11) induces significant expansion and proliferation of HPP-CFC and LPP-CFC. Cell-cycle analysis showed that these hematopoietic progenitors were induced to actively cell cycle by culture with these cytokines. In the first competitive transplant model, which uses Ly5.2/Ly5.1 congenic mice, cytokine-cultured Ly5.2 cells competed with noncultured Ly5.1 cells led to 5% +/- 1% engraftment at 12 weeks and to 4% +/- 2% engraftment at 22 weeks posttransplantation for the cytokine exposed cells. Noncultured Ly5.2 cells competed with cultured Ly5.1 cells led to 70% +/- 1% engraftment at 12 weeks and to 93% +/- 2% engraftment at 22 weeks posttransplantation. In the second model, which uses BALB/c marrow of opposite genders, cultured male cells lead to 13% +/- 9% engraftment at 10 weeks and 2% +/- 1% engraftment at 14 weeks posttransplantation; noncultured male cells lead to 70% +/- 2% and 95% +/- 2% engraftment at 10 and 14 weeks posttransplantation, respectively. Data presented here from two different competitive transplant studies show a defect of cytokine expanded marrow related to cell cycle activation which manifests as defective long-term repopulating capability in irradiated host mice. The engraftment defect is more profound at longer time intervals, suggesting that the most striking effect may be on long-term repopulating cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...