ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Leaf gas-exchange and chemical composition were investigated in seedlings of Quercus suber L. grown for 21 months either at elevated (700 μmol mol–1) or normal (350 μmol mol–1) ambient atmospheric CO2 concentrations, [CO2], in a sandy nutrient-poor soil with either ‘high’ N (0.3 mol N m–3 in the irrigation solution) or with ‘low’ N (0.05 mol N m–3) and with a constant suboptimal concentration of the other macro- and micronutrients. Although elevated [CO2] yielded the greatest total plant biomass in ‘high’ nitrogen treatment, it resulted in lower leaf nutrient concentrations in all cases, independent of the nutrient addition regime, and in greater nonstructural carbohydrate concentrations. By contrast, nitrogen treatment did not affect foliar N concentrations, but resulted in lower phosphorus concentrations, suggesting that under lower N, P use-efficiency in foliar biomass production was lower. Phosphorus deficiency was evident in all treatments, as photosynthesis became CO2 insensitive at intercellular CO2 concentrations larger than ≈ 300 μmol mol–1, and net assimilation rates measured at an ambient [CO2] of 350 μmol mol–1 or at 700 μmol mol–1 were not significantly different. Moreover, there was a positive correlation of foliar P with maximum Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) carboxylase activity (Vcmax), which potentially limits photosynthesis at low [CO2], and the capacities of photosynthetic electron transport (Jmax) and phosphate utilization (Pmax), which are potentially limiting at high [CO2]. None of these potential limits was correlated with foliar nitrogen concentration, indicating that photosynthetic N use-efficiency was directly dependent on foliar P availability. Though the tendencies were towards lower capacities of potential limitations of photosynthesis in high [CO2] grown specimens, the effects were statistically insignificant, because of (i) large within-treatment variability related to foliar P, and (ii) small decreases in P/N ratio with increasing [CO2], resulting in balanced changes in other foliar compounds potentially limiting carbon acquisition. The results of the current study indicate that under P-deficiency, the down-regulation of excess biochemical capacities proceeds in a similar manner in leaves grown under normal and elevated [CO2], and also that foliar P/N ratios for optimum photosynthesis are likely to increase with increasing growth CO2 concentrations. Symbols: A, net assimilation rate (μmol m–2 s–1); Amax, light-saturated A (μmol m–2 s–1); α, initial quantum yield at saturating [CO2] and for an incident Q (mol mol–1); [CO2], atmospheric CO2 concentration (μmol mol–1); Ci, intercellular CO2 concentration (μmol mol–1); Ca, CO2 concentration in the gas-exchange cuvette (μmol mol–1); FB, fraction of leaf N in ‘photoenergetics’; FL, fraction of leaf N in light harvesting; FR, fraction of leaf N in Rubisco; Γ*, CO2 compensation concentration in the absence of Rd (μmol mol–1); Jmax*, capacity for photosynthetic electron transport; Jmc, capacity for photosynthetic electron transport per unit cytochrome f (mol e–[mol cyt f]–1 s–1); Kc, Michaelis-Menten constant for carboxylation (μmol mol–1); Ko, Michaelis-Menten constant for oxygenation (mmol mol–1); MA, leaf dry mass per area (g m–2); O, intercellular oxygen concentration (mmol mol–1); [Pi], concentration of inorganic phosphate (mM); Pmax*, capacity for phosphate utilization; Q, photosynthetically active quantum flux density (μmol m–2 s–1); Rd*, day respiration (CO2 evolution from nonphotorespiratory processes continuing in the light); Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RUBP, ribulose-1,5-bisphosphate; Tl, leaf temperature (°C); UTPU*, rate of triose phosphate utilization; Vcmax*, maximum Rubisco carboxylase activity; Vcr, specific activity of Rubisco (μmol CO2[g Rubisco]–1 s–1]*given in either μmol m–2 s–1 or in μmol g–1 s–1 as described in the text.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The nitrogen requirement of plants is predominantly supplied by NH4+ and/or NO3− from the soil solution, but the energetic cost of uptake and assimilation is generally higher for NO3− than for NH4+. We found that CO2 enrichment of the atmosphere enhanced the root uptake capacity for NO3−, but not for NH4+, in field-grown loblolly pine saplings. Increased preference for NO3− at the elevated CO2 concentration was accompanied by increased carbohydrate levels in roots. The results have important implications for the potential consequences of global climate change on plant-and ecosystem-level processes in many temperate forest ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Plant, cell & environment 25 (2002), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The success of the desert shrub Larrea tridentata (creosotebush) has been largely attributed to temperature acclimation and stomatal control of photosynthesis (A) under drought stress. However, there is a paucity of field data on these relationships. To address this void, we conducted a joint field and modelling study that encompassed a diverse set of environmental conditions. At a Larrea-dominated site in southern New Mexico we manipulated soil moisture during the growing season over a 2-year period and measured plant pre-dawn water potential (Ψpd), stomatal conductance (g) and A of individual shrubs. We used these data to develop a semi-mechanistic photosynthesis model (A–Season) that explicitly couples internal CO2 (Ci) and g. Vapour pressure deficit (VPD) and Ψpd affect instantaneous g in a manner that is consistent with a biophysical model of stomatal regulation of leaf water potential. Ci is modelled as a function of g, derived from a simplification of a typical A–Ci curve. After incorporating the effects of growing temperature on stomatal behaviour, the model was able to capture the large diurnal fluctuations in A, g and Ci and the observed hysteresis in g versus Ci dynamics. Our field data and application of the A–Season model suggest that dogma attributed to Larrea's success is supported with regard to stomatal responses to VPD and Ψpd, but not for mechanisms of temperature acclimation and CO2 demand.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Cotton plants were grown in CO2-controlled growth chambers in atmospheres of either 35 or 65 Pa CO2. A widely accepted model of C3 leaf photosynthesis was parameterized for leaves from both CO2 treatments using non-linear least squares regression techniques, but in order to achieve reasonable fits, it was necessary to include a phosphate limitation resulting from inadequate triose phosphate utilization. Despite the accumulation of large amounts of starch (〉50 g m−2) in the high CO2 plants, the photosynthetic characteristics of leaves in both treatments were similar, although the maximum rate of Rubisco activity (Vcmax), estimated from A versus Ci response curves measured at 29°C, was ∼10% lower in leaves from plants grown in high CO2. The relationship between key model parameters and total leaf N was linear, the only difference between CO2 treatments being a slight reduction in the slope of the line relating Vcmax to leaf N in plants grown at high CO2. Stomatal conductance of leaves of plants grown and measured at 65 Pa CO2 was approximately 32% lower than that of plants grown and measured at 35 Pa. Because photosynthetic capacity of leaves grown in high CO2 was only slightly less than that of leaves grown in 35 Pa CO2, net photosynthesis measured at the growth CO2, light and temperature conditions was approximately 25% greater in leaves of plants grown in high CO2, despite the reduction in leaf conductance. Greater assimilation rate was one factor allowing plants grown in high CO2 to incorporate 30% more biomass during the first 36 d of growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of biometeorology 28 (1984), S. 61-71 
    ISSN: 1432-1254
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Abstract Simple exponential decay models were used to describe the variation in irradiance profiles within a snap bean (Phaseolus vulgaris L.) canopy over a 33-day period of canopy development. The extinction coefficients of these models were varied over time as a function of changing canopy leaf area; nonlinear least-squares procedures were used to estimate parameter values. The resultant model response surfaces depict the changes in canopy irradiance that accompany canopy maturation and illustrate the dynamic nature of canopy closure. A criterion index is defined to aid in assessing the applicability of these models for use in whole-plant simulation models, and an evaluation of these models is given based on this index, their predictive accuracy, and the utility for use within varying modeling frameworks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Gas-exchange ; Larrea tridentata ; Phenology ; Stomatal conductance ; Water relations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Larrea tridentata is a xerophytic evergreen shrub, dominant in the arid regions of the southwestern United States. We examined relationships between gasexchange characteristics, plant and soil water relations, and growth responses of large versus small shrubs of L. tridentata over the course of a summer growing season in the Chihuahuan Desert of southern New Mexico, USA. The soil wetting front did not reach 0.6 m, and soils at depths of 0.6 and 0.9 m remained dry throughout the summer, suggesting that L. tridentata extracts water largely from soil near the surface. Surface soil layers (〈0.3 m) were drier under large plants, but predawn xylem water potentials were similar for both plant sizes suggesting some access to deeper soil moisture reserves by large plants. Stem elongation rates were about 40% less in large, reproductively active shrubs than in small, reproductively inactive shrubs. Maximal net photosynthetic rates (Pmax) occurred in early summer (21.3 μ mol m-2 s-1), when pre-dawn xylem water potential (XWP) reached ca. -1 MPa. Although both shrub sizes exhibited similar responses to environmental factors, small shrubs recovered faster from short-term drought, when pre-dawn XWP reached about -4.5 MPa and Pmax decreased to only ca. 20% of unstressed levels. Gas exchange measurements yielded a strong relationship between stomatal conductance and photosynthesis, and the relationship between leaf-to-air vapor pressure deficit and stomatal conductance was found to be influenced by pre-dawn XWP. Our results indicate that stomatal responses to water stress and vapor pressure deficit are important in determining rates of carbon gain and water loss in L. tridentata.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Data from the US/IBP Desert Biome validation studies indicate that above-ground production and biomass allocated to reproduction in Larrea tridentata vary from one year to another depending upon the timing and extent of soil-moisture availability. In an attempt to verify these observations and determine to what extent water availability can affect total aboveground production and reproductive allocation in this widely distributed warm desert shrub, a series of soil-moisture augmentation experiments were conducted. High levels of soil moisture had a greater effect on reproductive allocation than on total above-ground production. Enhanced soil moisture during the period of active growth increased total above-ground production and reduced the percentage of biomass allocated to reproduction. Enhanced soil moisture during the normal periods of little or no growth did not increase total above-ground production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 123 (2000), S. 90-98 
    ISSN: 1432-1939
    Keywords: Key words Chihuahuan Desert ; C-4 photosynthesis ; Water stress ; Relative growth rate ; Xerophytism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Eight perennial C-4 grasses from the Jornada del Muerto Basin in southern New Mexico show five-fold differences in relative growth rates under well- watered conditions (RGRmax). In a controlled environment, we tested the hypothesis that there is an inverse relationship (trade-off) between RGRmax and the capacity of these species to tolerate drought. We examined both physiological (gas exchange) and morphological (biomass allocation, leaf properties) determinants of growth for these eight species under three steady-state drought treatments (none=control, moderate, and severe). When well watered, the grasses exhibited a large interspecific variation in growth, which was reflected in order-of-magnitude biomass differences after 5 weeks. The species had similar gas-exchange characteristics, but differed in all the measured allocation and morphological characteristics, namely tiller mass and number, root:shoot ratio, dry-matter content, and specific leaf area (SLA). Drought affected tillering, morphology, and allocation, and reduced growth by 50 and 68% (moderate and severe drought, respectively) compared to the well-watered controls. With the exception of SLA, none of these variables showed a significant species-by-treatment interaction. We calculated three indices of drought tolerance, defined as the ratio in final biomass between all the possible ”dry”/”wet” treatment pairs: severe/moderate, moderate/control, and severe/control. We found no significant correlation between these drought tolerance indices, on the one hand, and three indices of growth potential (greenhouse RGRmax, final biomass in the control treatment, and final:initial biomass ratio in controls), on the other. Based on these controlled-environment results, we hypothesize that the commonly reported correlation between plant growth potential and drought tolerance in the field may in some cases be explained by differential effects of plants on soil-water content rather than by differences in species responses to drought.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Photosynthesis ; Stomata ; Model ; Rootshoot interaction ; Sclerophyllous plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mediterranean sclerophyll shrubs respond to seasonal drought by adjusting the amount of leaf area exposed and by reducing gas exchange via stomatal closure mechanisms. The degree to which each of these modifications can influence plant carbon and water balances under typical mediterranean-type climate conditions is examined. Leaf area changes are assessed in the context of a canopy structure and light microclimate model. Shifts in physiological response are examined with a mechanistically-based model of C3 leaf gas exchange that simulates progressive reduction of maximum photosynthesis and transpiration rates and increasingly strong midday stomatal closure over the course of drought. The results demonstrate that midday stomatal closure may effectively contribute to drought avoidance, increase water use efficiency, and strongly alter physiological efficiency in the conversion of intercepted light energy to photoproducts. Physiological adjustments lead to larger reductions in water use than occur when comparing leaf area index 3.5 to 1.5, extremes found for natural stands of sclerophyll shrubs in the California chaparral. Reductions in leaf area have the strongest effect on resource capture and use during non-water-stressed periods and the least effect under extreme drought conditions, while shifts in physiological response lead to large savings of water and efficient water use under extreme stress. An important model parameter termed GFAC (proportionality factor expressing the relation of conductance [g] to net photosynthesis rate) is utilized, which changes in response to the integrated water stress experimence of shrubs and alters the degree to which stomata may open for a given rate of carbon fixation. We attempt to interpret this parameter in terms of physiological mechanisms known to modify control of leaf gas exchange during drought. The analysis helps visualize means by which canopy gas exchange behavior may be coupled to physiological changes occurring in the root environment during soil drying.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 165 (1994), S. 21-32 
    ISSN: 1573-5036
    Keywords: allocation ; CO2 ; image analysis ; loblolly pine ; nitrogen ; root morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This paper examines how elevated CO2 and nitrogen (N) supply affect plant characteristics of loblolly pine (Pinus taeda L.) with an emphasis on root morphology. Seedlings were grown in greenhouses from seeds during one growing season at two atmospheric CO2 concentrations (375 and 710 μL L-1) and two N levels (High and Low). Root morphological characteristics were determined using a scanner and an image analysis program on a Macintosh computer. In the high N treatment, elevated CO2 increased total plant dry weight by 80% and did not modify root to shoot (R/S) dry weight ratio, and leaf and plant N concentration at the end of the growing season. In the low N treatment, elevated CO2 increased total dry weight by 60%. Plant and leaf N concentration declined and R/S ratio tended to increase. Nitrogen uptake rate on both a root length and a root dry weight basis was greater at elevated CO2 in the high N treatment and lower in the low N treatment. We argue that N stress resulting from short exposures to nutrients might help explain the lower N concentrations observed at high CO2 in other experiments; Nitrogen and CO2 levels modified root morphology. High N increased the number of secondary lateral roots per length of first order lateral root and high CO2 increased the length of secondary lateral roots per length of first order lateral root. Number and length of first order lateral roots were not modified by either treatment. Specific root length of main axis, and to a lower degree, of first order laterals, declined at high CO2, especially at high N. Basal stem diameter and first order root diameters increased at high CO2, especially at high N. Elevated CO2 increased the proportion of upper lateral roots within the root system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...