ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1983-09-09
    Description: Intracellular recordings from mammalian neuroendocrine cells showed that steady, injected currents can modify and block periodic spike bursts previously associated with increased neurohormone release. Spike afterpotentials could sum to form plateau potentials, which generated bursts and did not depend on axonal conduction or chemical synapses. Therefore, bursting involves a spike-dependent, positive-feedback mechanism endogenous to single neuroendocrine cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrew, R D -- Dudek, F E -- NS 16877/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1983 Sep 9;221(4615):1050-2.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6879204" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; *Electrophysiology ; Evoked Potentials ; Feedback ; Hypothalamus/cytology ; In Vitro Techniques ; Membrane Potentials ; Neurosecretory Systems/cytology/*physiology ; Rats ; Tetrodotoxin/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1981-03-13
    Description: Most magnocellular neurosecretory cells that terminate in the posterior pituitary secrete either vasopressin, oxytocin, or enkephalin. Intracellular injection of the fluorescent dye Lucifer Yellow into single magnocellular neurons in slices of rat hypothalamus resulted in dye transfer between these cells. Freeze-fracture replicas of these cells occasionally revealed gap junctions, which presumably contain channels that mediate the dye coupling. These two independent techniques strongly suggest that some mammalian neuropeptidergic cells are electrotonically coupled, providing a possible means for recruitment and synchronization of their electrical activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andrew, R D -- MacVicar, B A -- Dudek, F E -- Hatton, G I -- NS 01940/NS/NINDS NIH HHS/ -- NS 16683/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1981 Mar 13;211(4487):1187-9.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7466393" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Communication ; Fluorescent Dyes ; Freeze Fracturing ; Hypothalamus/*physiology/ultrastructure ; Intercellular Junctions/*physiology ; Paraventricular Hypothalamic Nucleus/physiology ; Rats ; Supraoptic Nucleus/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 190 (1978), S. 235-246 
    ISSN: 1432-0878
    Keywords: Neurosecretion ; Cobalt backfilling ; Crustacea ; Sinus gland ; X organ
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The topography of the neurosecretory system in the decapod eyestalk has not been precisely delineated with light microscopy. Cobalt iontophoresis and electron microscopy have proved useful in clarifying the microstructure of this system. The sinus gland (sg) of the crayfish eyestalk consists of aggregated axon terminals which end at or near the blood space, lontophoresing cobalt back through the cut base of the sinus glands reveals proximal cell bodies in the eyestalk only in the X organ (Xo) region. Electron microscopy demonstrates that axons from about 115 neurosecretory cell bodies in the Xo form the Xo-sg tract. Intermingled with these Xo somata are smaller non-neurosecretory cell bodies which do not send axons into the sinus gland. One of these exhibits catecholamine fluorescence. Backfilling also reveals a second group of fibres which run from the brain along the optic tract and into the sinus gland. These brain-sg fibres are smaller in diameter than Xo-sg axons and lack neurosecretory vesicles. From these fibres collaterals extend into the eyestalk neuropil, especially in the proximity of the visual elements. The possible function of these non-neurosecretory processes within the sinus gland is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-05
    Description: In this study we present the UK's total ozone and UV data records, their measurement and preliminary processing, and discuss the observed trends. Notably, we combine the records from the Camborne and Reading sites to obtain a single ozone data series for southern England—a total duration of 30 years. Two-section linear trends and cross-over years are determined for Lerwick and southern England, both annually and seasonally. The observed minimum using this technique in the UK ozone record is found to occur during the year 1993. Significant trends of − 4.8% per decade for southern England and − 5.8% per decade for Lerwick are seen prior to the mid-1990s; the rate of decrease in the UK being at the upper limit of other European stations. No significant ozone trend is seen for the latter period in either location in contrast with Europe as a whole. We, additionally, compare the satellite-derived total ozone trends for both locations. The UV record at Reading showed a significant trend from 1993 to 2008 in the daily maximum UV index record (6.6% per decade), despite no significant recovery in the total ozone data series, suggesting a reduction in cloud cover during the midday period. Filtering data to remove other factors shows the erythemal UV to have an ozone-dependent trend of − 0.11% per year, but this is not statistically significant. We find no correlation between anomalies in the surface UV and total ozone records suggesting that the majority of the inter-annual variability is due to changes in cloud cover and other effects. Copyright © 2010 Royal Meteorological Society
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-01
    Description: Long implicated in the invasion process, live-bait anglers are highly mobile species vectors with frequent overland transport of fishes. To test hypotheses about the role of anglers in propagule transport, we developed a social-ecological model quantifying the opportunity for species transport beyond the invaded range resulting from bycatch during commercial bait operations, incidental transport, and release to lake ecosystems by anglers. We combined a gravity model with a stochastic, agent-based simulation, representing a 1-yr iteration of live-bait angling and the dynamics of propagule transport at fine spatiotemporal scales (i.e., probability of introducing n propagules per lake per year). A baseline scenario involving round goby (Neogobius melanostomus) indicated that most angling trips were benign; irrespective of lake visitation, anglers failed to purchase and transport propagules (benign trips, median probability P = 0.99912). However, given the large number of probability trials (4.2 million live-bait angling events per year), even the rarest sequence of events (uptake, movement, and deposition of propagules) is anticipated to occur. Risky trips (modal P = 0.00088 trips per year; ≈1 in 1136) were sufficient to introduce a substantial number of propagules (modal values, Poisson model = 3715 propagules among 1288 lakes per year; zero-inflated negative binomial model = 6722 propagules among 1292 lakes per year). Two patterns of lake-specific introduction risk emerged. Large lakes supporting substantial angling activity experienced propagule pressure likely to surpass demographic barriers to establishment (top 2.5% of lakes with modal outcomes of five to 76 propagules per year; 303 high-risk lakes with three or more propagules per year). Small or remote lakes were less likely to receive propagules; however, most risk distributions were leptokurtic with a long right tail, indicating the rare occurrence of high propagule loads to most waterbodies. Infestation simulations indicated that the number of high-risk waterbodies could be as great as 1318 (zero-inflated negative binomial), whereas a 90% reduction in bycatch from baseline would reduce the modal number of high risk lakes to zero. Results indicate that the combination of invasive bycatch and live-bait anglers warrants management concern as a species vector, but that risk is confined to a subset of individuals and recipient sites that may be effectively managed with targeted strategies. # doi:10.1890/13-0541.1
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-10
    Description: Spread of alien species has increased with global trade and human movement, especially over the past century. Some alien species significantly alter the freshwater ecosystems they invade, thus there has been a growing tendency for governments to develop management programs to prevent invasions and their undesirable consequences. Two factors considered as null models when assessing the potential for biological invasions are colonization pressure ( i.e ., the number of species introduced) and propagule pressure [ i.e ., the number (propagule size), and frequency (propagule number), of individuals of each species introduced]. We translate the terminology of species abundance distributions to the invasion terminology of propagule size and colonization size (PS and CS, respectively). We conduct hypothesis testing to determine the underlying statistical species abundance distribution for zooplankton assemblages transported between freshwater ecosystems; and, on the basis of a lognormal statistical distribution, construct four hypothetical assemblages spanning assemblage structure, rank-abundance gradient ( e.g ., even vs uneven), total abundance (of all species combined), and relative contribution of PS vs CS. For a given CS, many combinations of PS and total abundance can occur when transported assemblages conform to a lognormal species abundance distribution; therefore, for a given transportation event, many combinations of CS and PS are possible with differing invasion outcomes. An assemblage exhibiting high PS but low CS (species poor, but highly abundant) easily overcomes demographic barriers to establishment, but with lower certainty of amenable environmental conditions in the recipient region; whereas, the opposite extreme, high CS and low PS (species rich, but low abundance per species) provides multiple opportunities for one of n arriving species to circumvent environmental barriers, albeit with lower potential to overcome demographic constraints. Species abundance distributions of transported assemblages and the corresponding influence of CS and PS are some of many factors ( e.g ., demographic and genetic stochasticity, environmental variability of recipient ecosystems) that will help refine our understanding of establishment risk following human-mediated movements of species assemblages between freshwater ecosystems.
    Print ISSN: 1129-5767
    Electronic ISSN: 1723-8633
    Topics: Biology
    Published by PAGEPress
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-30
    Description: Ecological Applications, Volume 24, Issue 4, Page 877-894, June 2014. Long implicated in the invasion process, live-bait anglers are highly mobile species vectors with frequent overland transport of fishes. To test hypotheses about the role of anglers in propagule transport, we developed a social-ecological model quantifying the opportunity for species transport beyond the invaded range resulting from bycatch during commercial bait operations, incidental transport, and release to lake ecosystems by anglers. We combined a gravity model with a stochastic, agent-based simulation, representing a 1-yr iteration of live-bait angling and the dynamics of propagule transport at fine spatiotemporal scales (i.e., probability of introducing n propagules per lake per year). A baseline scenario involving round goby (Neogobius melanostomus) indicated that most angling trips were benign; irrespective of lake visitation, anglers failed to purchase and transport propagules (benign trips, median probability P = 0.99912). However, given the large number of probability trials (4.2 million live-bait angling events per year), even the rarest sequence of events (uptake, movement, and deposition of propagules) is anticipated to occur. Risky trips (modal P = 0.00088 trips per year; ≈1 in 1136) were sufficient to introduce a substantial number of propagules (modal values, Poisson model = 3715 propagules among 1288 lakes per year; zero-inflated negative binomial model = 6722 propagules among 1292 lakes per year). Two patterns of lake-specific introduction risk emerged. Large lakes supporting substantial angling activity experienced propagule pressure likely to surpass demographic barriers to establishment (top 2.5% of lakes with modal outcomes of five to 76 propagules per year; 303 high-risk lakes with three or more propagules per year). Small or remote lakes were less likely to receive propagules; however, most risk distributions were leptokurtic with a long right tail, indicating the rare occurrence of high propagule loads to most waterbodies. Infestation simulations indicated that the number of high-risk waterbodies could be as great as 1318 (zero-inflated negative binomial), whereas a 90% reduction in bycatch from baseline would reduce the modal number of high risk lakes to zero. Results indicate that the combination of invasive bycatch and live-bait anglers warrants management concern as a species vector, but that risk is confined to a subset of individuals and recipient sites that may be effectively managed with targeted strategies.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-04
    Description: Ecological Applications, Volume 24, Issue 4, Page 877-894, June 2014. Long implicated in the invasion process, live-bait anglers are highly mobile species vectors with frequent overland transport of fishes. To test hypotheses about the role of anglers in propagule transport, we developed a social-ecological model quantifying the opportunity for species transport beyond the invaded range resulting from bycatch during commercial bait operations, incidental transport, and release to lake ecosystems by anglers. We combined a gravity model with a stochastic, agent-based simulation, representing a 1-yr iteration of live-bait angling and the dynamics of propagule transport at fine spatiotemporal scales (i.e., probability of introducing n propagules per lake per year). A baseline scenario involving round goby (Neogobius melanostomus) indicated that most angling trips were benign; irrespective of lake visitation, anglers failed to purchase and transport propagules (benign trips, median probability P = 0.99912). However, given the large number of probability trials (4.2 million live-bait angling events per year), even the rarest sequence of events (uptake, movement, and deposition of propagules) is anticipated to occur. Risky trips (modal P = 0.00088 trips per year; ≈1 in 1136) were sufficient to introduce a substantial number of propagules (modal values, Poisson model = 3715 propagules among 1288 lakes per year; zero-inflated negative binomial model = 6722 propagules among 1292 lakes per year). Two patterns of lake-specific introduction risk emerged. Large lakes supporting substantial angling activity experienced propagule pressure likely to surpass demographic barriers to establishment (top 2.5% of lakes with modal outcomes of five to 76 propagules per year; 303 high-risk lakes with three or more propagules per year). Small or remote lakes were less likely to receive propagules; however, most risk distributions were leptokurtic with a long right tail, indicating the rare occurrence of high propagule loads to most waterbodies. Infestation simulations indicated that the number of high-risk waterbodies could be as great as 1318 (zero-inflated negative binomial), whereas a 90% reduction in bycatch from baseline would reduce the modal number of high risk lakes to zero. Results indicate that the combination of invasive bycatch and live-bait anglers warrants management concern as a species vector, but that risk is confined to a subset of individuals and recipient sites that may be effectively managed with targeted strategies.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-09-24
    Description: Understanding the functional relationship between the sample size and the performance of species richness estimators is necessary to optimize limited sampling resources against estimation error. Nonparametric estimators such as Chao and Jackknife demonstrate strong performances, but consensus is lacking as to which estimator performs better under constrained sampling. We explore a method to improve the estimators under such scenario. The method we propose involves randomly splitting species-abundance data from a single sample into two equally sized samples, and using an appropriate incidence-based estimator to estimate richness. To test this method, we assume a lognormal species-abundance distribution (SAD) with varying coefficients of variation (CV), generate samples using MCMC simulations, and use the expected mean-squared error as the performance criterion of the estimators. We test this method for Chao, Jackknife, ICE, and ACE estimators. Between abundance-based estimators with the single sample, and incidence-based estimators with the split-in-two samples, Chao2 performed the best when CV 〈 0.65, and incidence-based Jackknife performed the best when CV 〉 0.65, given that the ratio of sample size to observed species richness is greater than a critical value given by a power function of CV with respect to abundance of the sampled population. The proposed method increases the performance of the estimators substantially and is more effective when more rare species are in an assemblage. We also show that the splitting method works qualitatively similarly well when the SADs are log series, geometric series, and negative binomial. We demonstrate an application of the proposed method by estimating richness of zooplankton communities in samples of ballast water. The proposed splitting method is an alternative to sampling a large number of individuals to increase the accuracy of richness estimations; therefore, it is appropriate for a wide range of resource-limited sampling scenarios in ecology. We propose a new methodology to randomly split species-abundance data from a single sample into two equally sized subsamples and use an appropriate incidence-based richness estimator to increase their performances. The proposed method is an alternative to having a large sample to increase estimation accuracy. This can be appropriate for a wide range of resource-limited sampling scenarios in ecology.
    Electronic ISSN: 2045-7758
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-06
    Description: Recent studies have recognized the importance of propagule pressure (number of individuals) and colonization pressure (number of species) for explaining establishment success of nonindigenous species. However, the International Ballast Water Management Convention, when ratified, will require ships to satisfy a numeric discharge standard that focuses only on cumulative propagule pressure of all individuals released. Because of practical constraints, the standard does not differentiate between discharges of single vs. multiple species. The assemblage-based approach, which uses rank-abundance gradients to quantify and manage introduction risk, may compensate for this limitation (e.g., even gradient [relatively consistent propagule pressures among n transported species] or uneven gradient [uneven propagule pressures among n transported species]). Here we explore species abundance distributions of zooplankton during transportation in ballast water to assess variability in the structure of assemblages, with implications for the potential development of an assemblage-based management model. Specifically, we explored species abundance distributions for voyages that lasted 〈 24 h, those from 24 to 48 h, and those from 48 to 72 h (i.e., three time scales). Species abundance distributions within and across transit time scales were highly variable. As transport time increased, we observed a shift from uneven to even rank-abundance gradients. Owing to variation in assemblage structure, the number of organisms necessary to quantify colonization pressure exhibited similarly strong variation within and across time scales. Our study indicates that assemblage-based approaches to estimate introduction risk are warranted, yet the variation inherent in transported assemblages will induce substantial uncertainty within management models.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...