ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Language
Years
  • 1
    Publication Date: 2020-07-16
    Print ISSN: 0007-4861
    Electronic ISSN: 1432-0800
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-01
    Description: Quantifying impacts on the environment and human health is a critical requirement for geological subsurface utilisation projects. In practice, an easily accessible interface for operators and regulators is needed so that risks can be monitored, managed, and mitigated. The primary goal of this work was to create an environmental hazards quantification toolkit as part of a risk assessment for in-situ coal conversion at two European study areas: the Kardia lignite mine in Greece and the Máza-Váralja hard coal deposit in Hungary, with complex geological settings. A substantial rock volume is extracted during this operation, and a contaminant pool is potentially left behind, which may put the freshwater aquifers and existing infrastructure at the surface at risk. The data-driven, predictive tool is outlined exemplary in this paper for the Kardia contaminant transport model. Three input parameters were varied in a previous scenario analysis: the hydraulic conductivity, as well as the solute dispersivity and retardation coefficient. Numerical models are computationally intensive, so the number of simulations that can be performed for scenario analyses is limited. The presented approach overcomes these limitations by instead using surrogate models to determine the probability and severity of each hazard. Different surrogates based on look-up tables or machine learning algorithms were tested for their simplicity, goodness of fit, and efficiency. The best performing surrogate was then used to develop an interactive dashboard for visualising the hazard probability distributions. The machine learning surrogates performed best on the data with coefficients of determination R2〉0.98, and were able to make the predictions quasi-instantaneously. The retardation coefficient was identified as the most influential parameter, which was also visualised using the toolkit dashboard. It showed that the median values for the contaminant concentrations in the nearby aquifer varied by five orders of magnitude depending on whether the lower or upper retardation range was chosen. The flexibility of this approach to update parameter uncertainties as needed can significantly increase the quality of predictions and the value of risk assessments. In principle, this newly developed tool can be used as a basis for similar hazard quantification activities.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-18
    Description: Planned decommissioning of coal-fired plants in Europe requires innovative technical and economic strategies to support coal regions on their path towards a climate-resilient future. The repurposing of open pit mines into hybrid pumped hydro power storage (HPHS) of excess energy from the electric grid, and renewable sources will contribute to the EU Green Deal, increase the economic value, stabilize the regional job market and contribute to the EU energy supply security. This study aims to present a preliminary phase of a geospatial workflow used to evaluate land suitability by implementing a multi-criteria decision making (MCDM) technique with an advanced geographic information system (GIS) in the context of an interdisciplinary feasibility study on HPHS in the Kardia lignite open pit mine (Western Macedonia, Greece). The introduced geospatial analysis is based on the utilization of the constraints and ranking criteria within the boundaries of the abandoned mine regarding specific topographic and proximity criteria. The applied criteria were selected from the literature, while for their weights, the experts’ judgement was introduced by implementing the analytic hierarchy process (AHP), in the framework of the ATLANTIS research program. According to the results, seven regions were recognized as suitable, with a potential energy storage capacity from 1.09 to 5.16 GWh. Particularly, the present study’s results reveal that 9.27% (212,884 m2) of the area had a very low suitability, 15.83% (363,599 m2) had a low suitability, 23.99% (550,998 m2) had a moderate suitability, 24.99% (573,813 m2) had a high suitability, and 25.92% (595,125 m2) had a very high suitability for the construction of the upper reservoir. The proposed semi-automatic geospatial workflow introduces an innovative tool that can be applied to open pit mines globally to identify the optimum design for an HPHS system depending on the existing lower reservoir.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...