ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-13
    Description: Computations were performed for damaged configurations of the Shuttle Orbiter in support of the STS-107 Columbia accident investigation. Two configurations with missing wing leading-edge reinforced carbon-carbon (RCC) panels were evaluated at conditions just prior to the peak heating trajectory point. The initial configuration modeled the Orbiter with an approximate missing RCC panel 6 to determine whether this damage could result in anomalous temperatures measured during the STS-107 reentry. This missing RCC panel 6 computation was found to produce heating augmentation factors of 5 times the nominal heating rates on the side fuselage with lesser heat increases on the front of the OMS pod. This is consistent with the thermocouple and resistance temperature detector sensors from the STS-107 re-entry which observed off nominal high early in the re-entry trajectory. A second damaged configuration modeled the Orbiter with missing RCC panel 9 and included ingestion of the flow into the outboard RCC channel. This computation lowered the level (only 2 times nominal) and moved the location of the heating augmentation on the leeside fuselage relative to the missing RCC panel 6 configuration. The lesser heating augmentation for missing RCC panel 9 was confined near the wing fuselage juncture. Near nominal heating was predicted on the remainder of the side fuselage with some lower than nominal heating on the front surface of the OMS pod. These results for missing RCC panel 9 are consistent with data from the STS-107 re-entry where the heating augmentation was observed to move off the side fuselage and OMS pod sensors at later times in the trajectory. As this solution requires supersonic mass ingestion into the RCC channel, it is probably not an appropriate model prior to penetration of the flow through the spar into the wing structure. It may, however, be representative of the conditions at later times and could account for the movement of the heating signature on the side fuselage.
    Keywords: Space Transportation and Safety
    Type: JANNAF 27th Airbreathing Propulsion Subcommittee; Dec 01, 2003 - Dec 05, 2003; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The ability of the Laura flow solver to predict local heating augmentation factors for shallow cavities is assessed. This assessment is part of a larger e ort within the Space Shuttle return-to-flight program to develop technologies to support on-orbit tile repair decisions. The comparison is made against global phosphor thermography images taken in the Langley Aerothermodynamic Laboratory 20-Inch Mach 6 Air Tunnel. The cavities are rectangular in shape, with lengths L/H of 14 20 and depths H/ of 1.1 5.2. The fully laminar results, for Re = 300, show good agreement between the data sets. For Re = 503, the wind tunnel data indicates boundary layer transition with turbulent flow both within and downstream of the cavity. The turbulent flow structures are significantly di erent from the laminar predictions, with order of magnitude increases in the heating augmentations. Because of the di erent flow structures, no simple bump factor can be used to correct the laminar calculations to account for the turbulent heating levels. A fine gradation in wind tunnel cases will be required to clearly delineate the laminar-to-turbulent transition point, and hence the limits of applicability of the laminar numerical approach.
    Keywords: Aerodynamics
    Type: AIAA Paper 2004-2639 , 34th AIAA Fluid Dynamics Conference and Exhibit; Jun 28, 2004 - Jul 01, 2004; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Discrepancies between experiment and computation for shuttle leeside flow separation, which came to light in the Columbia accident investigation, are resolved. Tests were run in the Langley Research Center 20-Inch Hypersonic CF4 Tunnel with a baseline orbiter model and two extended trailing edge models. The extended trailing edges altered the wing leeside separation lines, moving the lines toward the fuselage, proving that wing trailing edge modeling does affect the orbiter leeside flow. Computations were then made with a wake grid. These calculations more closely matched baseline experiments. Thus, the present findings demonstrate that it is imperative to include the wake flow domain in CFD calculations in order to accurately predict leeside flow separation for hypersonic vehicles at high angles of attack.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper 2005-5138 , 35th AIAA Fluid Dynamics Conference and Exhibit; Jun 06, 2005 - Jun 09, 2005; Toronto, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Combustion testing at total enthalpy conditions corresponding to flight Math numbers in excess of 12 requires the use of impulse facilities. The expansion tube is the only operational facility of its size which can provide these conditions without excessive oxygen dissociation or driver gas contamination. Expansio tube operation is described herein and the operational parameters having the largest impact on its performance are determined. These are: driver-to-intermediate chamber pressure ratio, driver gas molecular weight and specific heat ratio, and driver gas temperature. Increases in the lase named parameter will markedly affect the test section static pressure. Preliminary calibration tests are discussed and test gas conditions which have been achieved are presented. Calculated and experimental test times are compared and the parameters affecting test time are discussed. The direction of future work using this important experimental tool is indicated.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper-89-2536 , AIAA/ASME/SAE/ASEE 25th Joint Propulsion Conference; Jul 10, 1989 - Jul 12, 1989; Monterey, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A series of tests conducted recently at the NASA JSC arc -jet test facility demonstrated that a protruding tile material can survive the exposure to the high enthalpy flows characteristic of the Space Shuttle Orbiter re-entry environments. The tests provided temperature data for the protuberance and the surrounding smooth tile surfaces, as well as the tile bond line. The level of heating needed to slump the protuberance material was achieved. Protuberance failure mode was demonstrated.
    Keywords: Aerodynamics
    Type: JSC-CN-19587 , 48th AIAA Aerosciences Meeting; Jan 03, 2010 - Jan 08, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...