ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2016-04-23
    Description: Using the Cluster data during the period from January to April between 2001 and 2006, we find an observation of solar wind entry due to magnetic reconnection occurred in the terrestrial high-latitude magnetospheric lobes, tailward of the cusps under northward Interplanetary Magnetic Field (IMF). Occurrence rate of solar wind entry events in this study is of the same order as that for the Cluster orbital interval from August to October between the years of 2002 and 2004 as reported by Shi et al [2013]. In this paper, we further study the role of the IMF B x and B y components in the control of solar wind plasmas entry based on the investigations of different magnetic dipole tilt variations between our database and Shi et al. [2013]. This study shows that the asymmetry distribution of solar wind entry events in the northern and southern lobes could be caused by the variation of magnetic dipole tilt, which could influence the locations of the reconnection site on the high latitude lobe magnetopause. On the other hand, IMF B x can also affect the solar wind plasma entry rate, which is also consistent with previous results. Therefore, we conclude that the “north-south asymmetry” of solar wind entry events in the lobes could be the combined result of magnetic dipole tilt and IMF B x . In addition, the IMF B y component can influence the entry events in conjunction with the variation of IMF B x component, which is in line with the Parker Spiral of the IMF.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-11
    Description: The response of the Indian summer monsoon (ISM) circulation and precipitation to Middle East dust aerosols on sub-seasonal timescales is studied using observations and the Weather Research and Forecasting model with chemistry (WRF-Chem). Satellite data shows that the ISM rainfall in coastal southwest India, central and northern India, and Pakistan are closely associated with Middle East dust aerosols. The physical mechanism behind this dust–ISM rainfall connection is examined through ensemble simulations with and without dust emission. Each ensemble includes 16 members with various physical and chemical schemes to consider the model uncertainties in parameterizing shortwave radiation, the planetary boundary layer, and aerosol chemical mixing rules. Experiments show that dust aerosols increase rainfall by about 0.44 mm day−1 (~ 10%) in coastal southwest India, central and northern India, and northern Pakistan, a pattern consistent with the observed relationship. The ensemble mean rainfall response over India shows much stronger spatial correlation with the observed rainfall response than any of the ensemble members. The largest modeling uncertainties are from the boundary layer schemes, followed by shortwave radiation schemes. In WRF-Chem, the dust AOD over the Middle East shows the strongest correlation with the ISM rainfall response when dust AOD leads rainfall response by about 11 days. Further analyses show that the increased ISM rainfall is related to the enhanced southwesterly flow and moisture transport from the Arabian Sea to the Indian subcontinent, which are associated with the development of an anomalous low pressure system over the Arabian Sea, the southern Arabian Peninsula, and the Iranian Plateau due to dust-induced heating in the lower troposphere (800–500 hPa). This study demonstrates a thermodynamic mechanism that links remote desert dust emission in the Middle East to the ISM circulation and precipitation variability on sub-seasonal timescales, which may have implications for ISM rainfall forecasts.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-02
    Description: The response of the Indian summer monsoon (ISM) circulation and precipitation to Middle East dust aerosols on sub-seasonal timescales is studied using observations and the Weather Research and Forecasting model coupled with online chemistry (WRF-Chem). Satellite data show that the ISM rainfall in coastal southwest India, central and northern India, and Pakistan is closely associated with the Middle East dust aerosols. The physical mechanism behind this dust–ISM rainfall connection is examined through ensemble simulations with and without dust emissions. Each ensemble includes 16 members with various physical and chemical schemes to consider the model uncertainties in parameterizing short-wave radiation, the planetary boundary layer, and aerosol chemical mixing rules. Experiments show that dust aerosols increase rainfall by about 0.44 mm day−1 (~10 % of the climatology) in coastal southwest India, central and northern India, and north Pakistan, a pattern consistent with the observed relationship. The ensemble mean rainfall response over India shows a much stronger spatial correlation with the observed rainfall response than any other ensemble members. The largest modeling uncertainties are from the boundary layer schemes, followed by short-wave radiation schemes. In WRF-Chem, the dust aerosol optical depth (AOD) over the Middle East shows the strongest correlation with the ISM rainfall response when dust AOD leads rainfall response by about 11 days. Further analyses show that increased ISM rainfall is related to enhanced southwesterly monsoon flow and moisture transport from the Arabian Sea to the Indian subcontinent, which are associated with the development of an anomalous low-pressure system over the Arabian Sea, the southern Arabian Peninsula, and the Iranian Plateau due to dust-induced heating in the troposphere. The dust-induced heating in the mid-upper troposphere is mainly located in the Iranian Plateau rather than the Tibetan Plateau. This study demonstrates a thermodynamic mechanism that links remote desert dust emissions in the Middle East to ISM circulation and precipitation variability on sub-seasonal timescales, which may have implications for ISM rainfall forecasts.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...