ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2005-12-15
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-09
    Description: Pearl millet is one of the most important subsistence crops grown in India and sub-Saharan Africa. In many cereal crops, reduced height is a key trait for enhancing yield, and dwarf mutants have been extensively used in breeding to reduce yield loss due to lodging under intense management. In pearl millet, the recessive d2 dwarfing gene has been deployed widely in commercial germplasm grown in India, the United States, and Australia. Despite its importance, very little research has gone into determining the identity of the d2 gene. We used comparative information, genetic mapping in two F 2 populations representing a total of some 1500 progeny, and haplotype analysis of three tall and three dwarf inbred lines to delineate the d2 region by two genetic markers that, in sorghum, define a region of 410 kb with 40 annotated genes. One of the sorghum genes annotated within this region is ABCB1 , which encodes a P-glycoprotein involved in auxin transport. This gene had previously been shown to underlie the economically important dw3 dwarf mutation in sorghum. The cosegregation of ABCB1 with the d2 phenotype, its differential expression in the tall inbred ICMP 451 and the dwarf inbred Tift 23DB, and the similar phenotype of stacked lower internodes in the sorghum dw3 and pearl millet d2 mutants suggest that ABCB1 is a likely candidate for d2 .
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-16
    Description: SUMMARYWheat grain yield is often associated with grain number/m2. Spike fertility (SF), i.e. the quotient between grain number and spike chaff dry weight, is a major component of grain number/m2 determination. Several methodologies have been proposed in the literature for field determination of SF, but they are tedious and expensive. Also, no comparison between methodologies has been done. The feasibility of using wheat SF as a selection criterion in a breeding programme or as a variable of interest in crop physiology studies depends largely upon the availability of a simpler and faster method for collecting and processing samples. Thus, the objective of the present study was to determine: (1) the association between SF calculated with the non-grain spike dry weight at anthesis (reference method) or at crop maturity, (2) the association between SF evaluated at the plot level (i.e. both non-grain spike dry weight and grain number determined as per area unit) and at the individual spike level and (3) the minimum number of individual spikes that should be sampled for the development of a screening method that can be applied in wheat breeding programmes or in crop physiology studies. Associations between variables were determined by correlation analysis of treatment means, and by a test of agreement for categorical rating (low, medium and high SF) between individual data of each variable. Four experiments (BY95, BC96, BC97 and ML07) were performed with five, ten, eight and eight wheat cultivars, respectively, under no environmental limitations, except for experiment ML07 which was not irrigated. In the first three experiments, SF was determined both at the beginning of grain filling and at maturity, in plot-size samples (0·8 m2/plot). In experiments BC96 and BC97, SF was determined both in plot-size samples and in individual spikes (five spikes per plot), at the beginning of grain filling. In experiment ML07, increasing numbers of individual spikes were sampled at maturity to assess SF. As a result: (1) a significant association (R2=0·78; P0·05); (2) when comparing SF determined in large plot-size samples v. in small samples of individual spikes, a good adjustment (R2=0·77; P0·05); and (3) increasing sample size from 5 to 40 spikes gradually decreased the average relative standard error of the mean (from 0·034 to 0·012, respectively). In conclusion, wheat SF can be determined in a fairly accurate way by sampling a small group of individual spikes at crop maturity, thereby allowing the evaluation of a large number of treatments in a timely fashion and the screening of breeding material from early generations.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-08
    Description: SUMMARYGrain yield in bread wheat is often tightly associated with grain number/m2. In turn, spike fertility (SF), i.e., the quotient between grain number and spike chaff dry weight, accounts for a great proportion of the variation in grain number among cultivars. In order to examine the potential use of SF as a breeding target, (1) variation for the trait was assessed in six datasets combining commercial cultivars under different environmental conditions, (2) trait heritability was estimated in a set of F1 hybrids derived from controlled crosses between cultivars with contrasting SF and (3) SF distribution pattern was analysed in two F2 segregating populations. Analysis of commercial cultivars revealed considerable variation for SF, under both optimal and sub-optimal conditions. In addition, genotypic variation was consistently larger than genotype × environment interaction variation in all datasets. Narrow sense heritability, estimated by the mid-parent-offspring regression of 20 F1 hybrids and their respective parents, was 0·63. Data from two F2 populations exhibited bell-shaped and symmetric frequency distributions of SF, with a SF mean intermediate between the parental values. Substantial transgressive segregation was detected in both F2 populations. In conclusion, SF appears to be a heritable trait with predominantly additive effects. This warrants further investigation on the feasibility of using SF as an early selection criterion in wheat breeding programs aimed at increasing grain yield.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...