ISSN:
1476-5535
Schlagwort(e):
Keywords: echinocandin B deacylase; substrate specificity; evolution/technology; antifungal agent
Quelle:
Springer Online Journal Archives 1860-2000
Thema:
Biologie
,
Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
Notizen:
Aspergillus nidulans produces echinocandin B, a neutral lipopeptide. A deacylase from Actinoplanes utahensis catalyzes cleavage of the linoleoyl group from echinocandin B, a key step in generating a potential antifungal agent. Virtually all (99.8%) deacylase activity was cell-associated. The deacylase was salt-solubilized, heat-treated and purified to apparent homogeneity by a 3-step chromatographic procedure. The enzyme was a heterodimer consisting of 63- and 18-to-20-kDa subunit, optimally active at pH 6.0, and at 60°C with salt. The K m of the deacylase for echinocandin B was 50 μM and its V max was 14.6 μmol cyclic hexapeptide min−1 mg−1protein. The substrate specificity of the enzyme was broad with respect to both acyl and cyclic peptide analogues of echinocandin B. The two deacylase subunit genes were cloned and over-expressed in Streptomyces lividans. The recombinant deacylase was purified from the culture filtrate to apparent homogeneity by a 1-step chromatographic procedure. Using the recombinant deacylase, an enzymatic deacylation of immobilized echinocandin B resulted in the generation of cyclic hexapeptide at gram-level. Journal of Industrial Microbiology & Biotechnology (2000) 24, 173–180.
Materialart:
Digitale Medien
URL:
http://dx.doi.org/10.1038/sj.jim.2900796
Permalink