ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-19
    Print ISSN: 0049-6979
    Electronic ISSN: 1573-2932
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1420-9098
    Keywords: Apis mellifera ; queen pheromone ; queen rearing ; monogyny ; Africanized
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Queen rearing is suppressed in honey bees (Apis mellifera L.) by pheromones, particularly the queen's mandibular gland pheromone. In this study we compared this pheromonally-based inhibition between temperate and tropically-evolved honey bees. Colonies of European and Africanized bees were exposed to synthetic queen mandibular gland pheromone (QMP) for ten days following removal of resident queens, and their queen rearing responses were examined. Queen rearing was suppressed similarly in both European and Africanized honey bees with the addition of synthetic QMP, indicating that QMP acts on workers of both races in a comparable fashion. QMP completely suppressed queen cell production for two days, but by day six, cells containing queen larvae were present in all treated colonies, indicating that other signals play a role in the suppression of queen rearing. In queenless control colonies not treated with QMP, Africanized bees reared 30% fewer queens than Europeans, possibly due to racial differences in response to feedback from developing queens and/or their cells. Queen development rate was faster in Africanized colonies, or they selected older larvae to initiate cells, as only 1 % of queen cells were unsealed after 10 days compared with 12% unsealed cells in European colonies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental and applied acarology 15 (1992), S. 99-108 
    ISSN: 1572-9702
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Comparisons were made between the infestation levels of the honey bee tracheal miteAcarapis woodi (Rennie) in newly emerged honey bees (Apis mellifera L.) exposed for 12 h during the daytime or nighttime in mite-infested bee colonies. Bees exposed during the night harbored a significantly higher number of mites (718) when compared with the daytime bees (88 mites) (n=14 day/night cycles utilizing 33 colonies). On 4 days of an 8-day study, three test colonies were closed during the daytime to eliminate foraging flights. Thus equal numbers of bees were present in the colonies during the day and night sample periods. These 4 flightless days were compared to 4 free-flight days and mite dispersal rates were not significantly different. Additionally, the movement of bees on the combs of four glass-walled observation hives was quantified on 10 days at 08∶00, 12∶00, 16∶00, 20∶00, 24∶00 and 04∶00 h. Bee movement at 24∶00 and 04∶00 h was significantly lower than the other observation times. Movement of host bees may be one factor involved in the increased nighttime mite dispersals. These findings do not support the hypothesis that the absence of foraging bees during the day reduces the bee to bee contact time, thus reducing mite dispersals between host bees. Differential diurnal activity levels between host bees and mite parasites was demonstrated. The exact role of host-bee behavior and/or mite behavior in the nighttime dispersal patterns observed, remains for further investigation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-1561
    Keywords: Apis mellifera ; honey bee ; queen mandibular gland pheromone ; Africanized honey bee
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The composition of the five-component honey bee queen mandibular gland pheromone (QMP) of mated European honey bee queens was compared to those of virgin and drone-laying (i.e., laying only haploid unfertilized eggs that develop into males), European queens and Africanized mated queens. QMP of mated European queens showed significantly greater quantities of individual components than all queen types compared, except for a significantly greater quantity of 9-hydroxy-(E)-2-decenoic acid (9-HDA) found in Africanized queens. Glands of European drone-laying queens contained quantities intermediate between virgin and mated queens, reflecting their intermediate reproductive state and age. QMP ontogeny shifts from a high proportion of 9-keto-(E)-2-decenoic acid (ODA) in young unmated queens to roughly equal proportions of ODA and 9-HDA in mated queens. A biosynthetic shift occurs after mating that results in a greater proportion of 9-HDA, methylp-hydroxybenzoate (HOB), and 4-hydroxy-3-methoxyphenylethanol (HVA) production, accompanied by a decreased proportion of ODA. Africanized QMP proportions of ODA and 9-HDA were significantly different from European queens. A quantitative definition of a “queen equivalent” of QMP is proposed for the various queen types, and a standard queen equivalent for mated European honeybee queen mandibular gland pheromone is adopted as 200µg ODA, 80µg 9-HDA, 20µg HOB, and 2 µg HVA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...