ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2017-08-01
    Description: The U.S. National Blend of Models provides statistically postprocessed, high-resolution multimodel ensemble guidance, providing National Weather Service forecasters with a calibrated, downscaled starting point for producing digital forecasts. Forecasts of 12-hourly probability of precipitation (POP12) over the contiguous United States are produced as follows: 1) Populate the forecast and analyze cumulative distribution functions (CDFs) to be used later in quantile mapping. Were every grid point processed without benefit of data from other points, 60 days of training data would likely be insufficient for estimating CDFs and adjusting the errors in the forecast. Accordingly, “supplemental” locations were identified for each grid point, and data from the supplemental locations were used to populate the forecast and analyzed CDFs used in the quantile mapping. 2) Load the real-time U.S. and Environment Canada (now known as Environment and Climate Change Canada) global deterministic and ensemble forecasts, interpolated to ⅛°. 3) Using CDFs from the past 60 days of data, apply a deterministic quantile mapping to the ensemble forecasts. 4) Dress the resulting ensemble with random noise. 5) Generate probabilities from the ensemble relative frequency. 6) Spatially smooth the forecast using a Savitzky–Golay smoother, applying more smoothing in flatter areas. Forecasts of 6-hourly quantitative precipitation (QPF06) are more simply produced as follows: 1) Form a grand ensemble mean, again interpolated to ⅛°. 2) Quantile map the mean forecast using CDFs of the ensemble mean and analyzed distributions. 3) Spatially smooth the field, similar to POP12. Results for spring 2016 are provided, demonstrating that the postprocessing improves POP12 reliability and skill, as well as the deterministic forecast bias, while maintaining sharpness and spatial detail.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-01-01
    Description: It is being increasingly recognized that the uncertainty in weather forecasts should be quantified and furnished to users along with the single-value forecasts usually provided. Probabilistic forecasts of “events” have been made in special cases; for instance, probabilistic forecasts of the event defined as 0.01 in. or more of precipitation at a point over a specified time period [i.e., the probability of precipitation (PoP)] have been disseminated to the public by the Weather Bureau/National Weather Service since 1966. Within the past decade, ensembles of operational numerical weather prediction models have been produced and used to some degree to provide probabilistic estimates of events easily dealt with, such as the occurrence of specific amounts of precipitation. In most such applications, the number of ensembles restricts this “enumeration” method, and the ensembles are characteristically underdispersive. However, fewer attempts have been made to provide a probability density function (PDF) or cumulative distribution function (CDF) for a continuous variable. The Meteorological Development Laboratory (MDL) has used the error estimation capabilities of the linear regression framework and kernel density fitting applied to individual and aggregate ensemble members of the Global Ensemble Forecast System of the National Centers for Environmental Prediction to develop PDFs and CDFs. This paper describes the method and results for temperature, dewpoint, daytime maximum temperature, and nighttime minimum temperature. The method produces reliable forecasts with accuracy exceeding the raw ensembles. Points on the CDF for 1650 stations have been mapped to the National Digital Forecast Database 5-km grid and an example is provided.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...