ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 8 (1976), S. 95-116 
    ISSN: 1432-1432
    Keywords: Molecular Evolution ; Phylogenetic Tree ; Numerical Taxonomy ; Networks ; Cytochrome c
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The process of determining the optimal phylogenetic tree from amino acid sequences or comparable data is divided into six stages. Particular attention is given both to the criteria that are used when testing for the optimal tree and the problem of determining the position of the original ancestor. Four types of criteria for evaluating the optimal tree are considered: 1. parsimony (fewest total changes), 2. path lengths from an ancestor to existing species, 3. subtracting the difference between each pair of species as measured on the tree and as compared directly with the data (−excess differences−), 4. Moore Residual Coefficient. These criteria are examined on a set of test data and some of the reasons for the differences among them are discussed. For example, the −average percent standard deviation− weights excess differences unequally in inverse proportion to the square of the observed differences. The Moore Residual Coefficient and the −excess differences− will not necessarily give a value of zero when there are no duplicated changes unless there can only be two states for each character (i.e. binary data). The path length and difference criteria (as well as the Moore Residual Coefficient) give unequal weighting to the individual branches of the tree by counting some branches more times than others. Particularly because of this some criteria will reject trees that are equally parsimonious and the criteria are said to be invalid. However the criterion of parsimony is insensitive in that it can give the same value for several basic networks and it does not specify the position of the original ancestor, the root of the tree. The importance is emphasised of stating a model and examining its predictions before a criterion is chosen to select the best network. The number of rooted trees that can be derived from a basic network (or unrooted tree) is described in relation to how detailed a description of the original ancestor is required. Four methods are described for determining the position of the root of the tree or original ancestor. Each method depends upon some additional information to that used in constructing the basic network and the method chosen will depend on this additional knowledge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 41 (1995), S. 666-674 
    ISSN: 1432-1432
    Keywords: Spectral analysis ; Split decomposition ; Hadamard ; Cytochrome b ; D-loop ; Xiphophorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examine ways of testing for the reliability of inference from biological sequence data using sequences from Xiphophorus fishes and newly implemented methodology for sequence analysis. The approach we take provides one means to examine the fit between model and data for different sequences and hence to evaluate heterogeneity between data sets. In the case of the present study we show D-loop sequences to be a better molecule for studying the phylogeny of Xiphophorus fishes than cytochrome b sequences. The results of the split decomposition and spectral analysis confirm an earlier phylogenetic hypothesis which had been based on maximum parsimony, neighbor-joining, maximum likelihood analyses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 46 (1998), S. 18-36 
    ISSN: 1432-1432
    Keywords: Key words: Molecular evolution — Molecular fossils — Ribozyme — RNA world — Spliceosome — Theoretical biology — Ribo-organism — Small nucleolar RNA —Riborgis eigensis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. An RNA world is widely accepted as a probable stage in the early evolution of life. Two implications are that proteins have gradually replaced RNA as the main biological catalysts and that RNA has not taken on any major de novo catalytic function after the evolution of protein synthesis, that is, there is an essentially irreversible series of steps RNA → RNP → protein. This transition, as expected from a consideration of catalytic perfection, is essentially complete for reactions when the substrates are small molecules. Based on these principles we derive criteria for identifying RNAs in modern organisms that are relics from the RNA world and then examine the function and phylogenetic distribution of RNA for such remnants of the RNA world. This allows an estimate of the minimum complexity of the last ribo-organism—the stage just preceding the advent of genetically encoded protein synthesis. Despite the constraints placed on its size by a low fidelity of replication (the Eigen limit), we conclude that the genome of this organism reached a considerable level of complexity that included several RNA-processing steps. It would include a large protoribosome with many smaller RNAs involved in its assembly, pre-tRNAs and tRNA processing, an ability for recombination of RNA, some RNA editing, an ability to copy to the end of each RNA strand, and some transport functions. It is harder to recognize specific metabolic reactions that must have existed but synthetic and bio-energetic functions would be necessary. Overall, this requires that such an organism maintained a multiple copy, double-stranded linear RNA genome capable of recombination and splicing. The genome was most likely fragmented, allowing each ``chromosome'' to be replicated with minimum error, that is, within the Eigen limit. The model as developed serves as an outgroup to root the tree of life and is an alternative to using sequence data for inferring properties of the earliest cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 46 (1998), S. 1-17 
    ISSN: 1432-1432
    Keywords: Key words: Genome structure — Introns — Molecular evolution — Molecular fossils — Origin of translation — Prokaryote origins —r Selection — Theoretical biology — Thermoreduction — Tree of life
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. We describe a sequential (step by step) Darwinian model for the evolution of life from the late stages of the RNA world through to the emergence of eukaryotes and prokaryotes. The starting point is our model, derived from current RNA activity, of the RNA world just prior to the advent of genetically-encoded protein synthesis. By focusing on the function of the protoribosome we develop a plausible model for the evolution of a protein-synthesizing ribosome from a high-fidelity RNA polymerase that incorporated triplets of oligonucleotides. With the standard assumption that during the evolution of enzymatic activity, catalysis is transferred from RNA → RNP → protein, the first proteins in the ``breakthrough organism'' (the first to have encoded protein synthesis) would be nonspecific chaperone-like proteins rather than catalytic. Moreover, because some RNA molecules that pre-date protein synthesis under this model now occur as introns in some of the very earliest proteins, the model predicts these particular introns are older than the exons surrounding them, the ``introns-first'' theory. Many features of the model for the genome organization in the final RNA world ribo-organism are more prevalent in the eukaryotic genome and we suggest that the prokaryotic genome organization (a single, circular genome with one center of replication) was derived from a ``eukaryotic-like'' genome organization (a fragmented linear genome with multiple centers of replication). The steps from the proposed ribo-organism RNA genome → eukaryotic-like DNA genome → prokaryotic-like DNA genome are all relatively straightforward, whereas the transition prokaryotic-like genome → eukaryotic-like genome appears impossible under a Darwinian mechanism of evolution, given the assumption of the transition RNA → RNP → protein. A likely molecular mechanism, ``plasmid transfer,'' is available for the origin of prokaryotic-type genomes from an eukaryotic-like architecture. Under this model prokaryotes are considered specialized and derived with reduced dependence on ssRNA biochemistry. A functional explanation is that prokaryote ancestors underwent selection for thermophily (high temperature) and/or for rapid reproduction (r selection) at least once in their history.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 3 (1974), S. 179-188 
    ISSN: 1432-1432
    Keywords: Covarions ; Cytochromec ; Evolutionary Clock ; Molecular Evolution ; Rattlesnake ; Vertebrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary It is shown that the method used by Jukes and Holmquist [Science177, 530 (1972)] is not able to lead to any conclusion on the rate of evolution of rattlesnake cytochromec because the method does not consider the time period over which the observed differences occurred. In an attempt to overcome this problem the phylogenetic relationship between rattlesnake, turtle and birds is examined from the paleontological evidence and from phylogenetic trees constructed from cytochromec sequences by “matrix methods” and by “ancestral sequence” methods. The paleonto-logical evidence and the “ancestral sequence tree” are in agreement for the positioning of rattlesnake. This ancestral sequence tree is used to estimate the rate of amino acid substitution and minimum base changes for different lines of descent among 20 vertebrate species. The rate of amino acid substitution is faster than average on the rattlesnake line but is not the fastest among the vertebrates and it is concluded that no “species specific” effect has yet been demonstrated for rattlesnake. However there is a large amount of diversity in the rates of amino acid substitution and this is discussed from the concept that at any point in time only a few codons (the covarions) are able to accept an amino acid substitution. It is suggested that some fluctuations in the rate of amino acid substitutions should occur.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 51 (2000), S. 194-204 
    ISSN: 1432-1432
    Keywords: Key words: RNase MRP — RNase P — RNA secondary structure — RNA-world — Catalytic RNA — Evolutionary trees — Covarion hypothesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Secondary structure is evaluated for determining evolutionary relationships between catalytic RNA molecules that are so distantly related they are scarcely alignable. The ribonucleoproteins RNase P (P) and RNase MRP (MRP) have been suggested to be evolutionarily related because of similarities in both function and secondary structure. However, their RNA sequences cannot be aligned with any confidence, and this leads to uncertainty in any trees inferred from sequences. We report several approaches to using secondary structures for inferring evolutionary trees and emphasize quantitative tests to demonstrate that evolutionary information can be recovered. For P and MRP, three hypotheses for the relatedness are considered. The first is that MRP is derived from P in early eukaryotes. The next is that MRP is derived from P from an early endosymbiont. The third is that both P and MRP evolved in the RNA-world (and the need for MRP has since been lost in prokaryotes). Quantitative comparisons of the pRNA and mrpRNA secondary structures have found that the possibility of an organellar origin of MRP is unlikely. In addition, comparison of secondary structures support the identity of an RNase P–like sequence in the maize chloroplast genome. Overall, it is concluded that RNA secondary structure is useful for evaluating evolutionary relatedness, even with sequences that cannot be aligned with confidence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 13 (1979), S. 127-149 
    ISSN: 1432-1432
    Keywords: Cytochrome c ; Phylogenetic tree ; Minimal spanning tree ; Graph theory ; Molecular evolution ; Steiner problem in graphs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The problem of determining the minimal phylogenetic tree is discussed in relation to graph theory. It is shown that this problem is an example of the Steiner problem in graphs which is to connect a set of points by a minimal length network where new points can be added. There is no reported method of solving realistically-sized Steiner problems in reasonable computing time. A heuristic method of approaching the phylogenetic problem is presented, together with a worked example with 7 mammalian cytochrome c sequences. It is shown in this case that the method develops a phylogenetic tree that has the smallest possible number of amino acid replacements. The potential and limitations of the method are discussed. It is stressed that objective methods must be used for comparing different trees. In particular it should be determined how close a given tree is to a mathematically determined lower bound. A theorem is proved which is used to establish a lower bound on the length of any tree and if a tree is found with a length equal to the lower bound, then no shorter tree can exist.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 13 (1979), S. 151-166 
    ISSN: 1432-1432
    Keywords: Minimal phylogenetic tree ; Cytochrome c ; Molecular evolution ; Upper and lower bounds ; Matching ; Multiple characters ; Minimal spanning tree ; Vertebrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We have recently described a method of building phylogenetic trees and have outlined an approach for proving whether a particular tree is optimal for the data used. In this paper we describe in detail the method of establishing lower bounds on the length of a minimal tree by partitioning the data set into subsets. All characters that could be involved in duplications in the data are paired with all other such characters. A matching algorithm is then used to obtain the pairing of characters that reveals the most duplications in the data. This matching may still not account for all nucleotide substitutions on the tree. The structure of the tree is then used to help select subsets of three or more. characters until the lower bound found by partitioning is equal to the length of the tree. The tree must then be a minimal tree since no tree can exist with a length less than that of the lower bound. The method is demonstrated using a set of 23 vertebrate cytochrome c sequences with the criterion of minimizing the total number of nucleotide substitutions. There are 131130 7045768798 9603440625 topologically distinct trees that can be constructed from this data set. The method described in this paper does identify 144 minimal tree variants. The method is general in the sense that it can be used for other data and other criteria of length. It need not however always be possible to prove a tree minimal but the method will give an upper and lower bound on the length of minimal trees.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 447 (2007), S. 913-913 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] ...In the absence of direct evidence, science should proceed cautiously with conjecture. Geologist Charles Lyell (1797–1875) warned us not to proceed like medieval scholars, who “often preferred absurd and extravagant positions, because greater skill was required to maintain ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 446 (2007), S. 501-502 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] On page 507 of this issue, Bininda-Emonds and co-authors present an evolutionary tree of more than 4,500 mammals, and conclude that more than 40 lineages of modern mammals have survived from the Cretaceous, some 100 million to 85 million years (Myr) ago, to the present. This is paralleled by ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...