ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.
    Keywords: Astronomy
    Type: ADASS Conference; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: Fulfilling the promise of an era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to single observatory observations. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. Each year, a number of proposals are accepted by a space-based observatory for conduction of astronomical observations and gathering of science data for the study of galactic events. Since each space-based observatory uses a set of instruments designed to operate in specific energy regions, most such studies are conducted by submitting observation proposals to multiple observatories, with requests to coordinate among themselves. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. In order to exploit new paradigms for observatory operation, the Goddard Space Flight Center's Advanced Architectures and Automation Branch has developed a prototype tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the science planning of coordinated observations for multiple spacecraft, as well as to increase the scheduling probability of observations. However, VOLT is also useful for single observatory planning to optimize observatory control. Three space-based missions are interested in using VOLT (the Hubble Space Telescope, the Chandra X-Ray Observatory, and the Far Ultraviolet Spectroscopic Explorer). The VOLT team members have collaborated with these missions to gather requirements and obtain feedback on their mission planning processes. VOLT has been developed as a cross-platform Java client application for use by scientists and observatory science planning staff to visualize scheduling options and constraints. It also supports a lightweight graphical user interface for remote viewing via a Web front end. Additionally, it uniquely supports the ability to interact with multiple, diverse scheduling packages in order to determine windows of opportunity for observations and visually portray the constraints of each observation request. VOLT enables science data capture scenarios which are currently either impossible, or which require extensive time and manpower to coordinate amongst multiple observatories. it supports early detection of planning conflicts by generating coordinated solutions based on observatory schedulability and constraints. The project development approach has included frequent prototype demonstrations to our interested missions to obtain feedback after each release of the software. We will present an overview of our lessons learned in infusing the VOLT tool into the operations of the missions we have collaborated with and a brief demonstration of the software.
    Keywords: Systems Analysis and Operations Research
    Type: SpaceOps 2002; Oct 09, 2002 - Oct 12, 2002; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.
    Keywords: Astronomy
    Type: SPIE 2002; Aug 22, 2002 - Aug 28, 2002; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: During the past two decades, the planning and scheduling community has substantially increased the capability and efficiency of individual planning and scheduling systems. Relatively recently, research work to streamline collaboration between planning systems is gaining attention. Spacecraft missions stand to benefit substantially from this work as they require the coordination of multiple planning organizations and planning systems. Up to the present time this coordination has demanded a great deal of human intervention and/or extensive custom software development efforts. This problem will become acute with increased requirements for cross-mission plan coordination and multi -spacecraft mission planning. The Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center is taking innovative steps to define collaborative planning architectures, and to identify coordinated planning tools for Cross-Mission Campaigns. Prototypes are being developed to validate these architectures and assess the usefulness of the coordination tools by the planning community. This presentation will focus on one such planning coordination too], named Visual Observation Layout Tool (VOLT), which is currently being developed to streamline the coordination between astronomical missions
    Keywords: Astronautics (General)
    Type: SpaceOps; Jun 19, 2000 - Jun 23, 2000; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Global Alert Resolution Network (GARNET) is a software system for delivering emergency alerts as well as less-urgent messages to members of the Goddard Space Flight Center work force via an intranet or the Internet, and can be adapted to similar use in other large organizations.
    Keywords: Computer Systems
    Type: GSC-14927-1 , NASA Tech Briefs, December 2008; 18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...