ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Earth and Planetary Sciences 12 (1984), S. 133-153 
    ISSN: 0084-6597
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 11 (1993), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Natural, pure CO2 inclusions in quartz and olivine (c. Fo90) were exposed to controlled fH2 conditions at T= 718–728°C and Ptotal= 2 kbar; their compositions were monitored (before and after exposures) by microsampling Raman spectroscopy (MRS) and microthermometry. In both minerals exposed at the graphite–methane buffer (fH2= 73 bar), fluid speciations record the diffusion of hydrogen into the inclusions. In quartz, room-temperature products in euhedral isolated (EI type) inclusions are carbonic phases with molar compositions of c. CO2(60) + CH4(40) plus graphite (Gr) and H2O, whereas anhedral inclusions along secondary fractures (AS type) are Gr-free and contain H2O plus carbonic phases with compositions in the range c. CO2(60) + CH4(40) to CO2(10) + CH4(90). EI type inclusions in olivine evolved to c. CO2(90–95) + CH4(5–10) without Gr, whereas AS type inclusions have a range of compositions from CO2(90) + CH4(10) ± Gr to CH4(50) + H2(50) ± Gr; neither H2O nor any hydrous species was detected by optical microscopy or MRS in the olivine-hosted products. Differences in composition between and among the texturally distinct populations of inclusions in both minerals probably arise from variations in initial fluid densities, as all inclusions apparently equilibrated with the ambient fH2. These relations suggest that compositional variability among inclusions in a given natural sample does not require the entrapment of multiple generations of fluids. In addition, the absence of H2O in the olivine-hosted inclusions would require the extraction of oxygen from the fluids, in which case re-equilibration mechanisms may be dependent on the composition and structure of the host mineral.Many of the same samples were re-exposed to identical P–T conditions using Ar as the pressure medium, yielding ambient fH2= 0.06 bar. In most inclusions, the carbonic fluids returned to pure CO2 and graphite persisted in the products. Reversal of the mechanisms from the prior exposure at fH2= 73 bar did not occur in any inclusions but the AS types in olivine, in which minor CO2 was produced at the expense of CH4 and/or graphite. The observed non-reversibility of previous mechanisms may be attributed to: (1) slower fluid–solid reactions compared to reactions in the homogeneous fluid phase; (2) depressed activities of graphite due to poor ordering; and/or (3) low ambient fO2 at the conditions of the second run.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Graphite-bearing peridotites, pyroxenites and eclogite xenoliths from the Kaapvaal craton of southern Africa and the Siberian craton, Russia, have been studied with the aim of: 1) better characterising the abundance and distribution of elemental carbon in the shallow continental lithospheric mantle; (2) determining the isotopic composition of the graphite; (3) testing for significant metastability of graphite in mantle rocks using mineral thermobarometry. Graphite crystals in peridotie, pyroxenite and eclogite xenoliths have X-ray diffraction patterns and Raman spectra characteristic of highly crystalline graphite of high-temperature origin and are interpreted to have crystallised within the mantle. Thermobarometry on the graphite-peridotite assemblages using a variety of element partitions and formulations yield estimated equilibration conditions that plot at lower temperatures and pressures than diamondiferous assemblages. Moreover, estimated pressures and temperatures for the graphite-peridotites fall almost exclusively within the experimentally determined graphite stability field and thus we find no evidence for substantial graphite metastability. The carbon isotopic composition of graphite in peridotites from this and other studies varies from δ13 CPDB = − 12.3 to − −3.8%o with a mean of-6.7‰, σ=2.1 (n=22) and a mode between-7 and-6‰. This mean is within one standard deviation of the-4‰ mean displayed by diamonds from peridotite xenoliths, and is identical to that of diamonds containing peridotite-suite inclusions. The carbon isotope range of graphite and diamonds in peridotites is more restricted than that observed for either phase in eclogites or pyroxenites. The isotopic range displayed by peridotite-suite graphite and diamond encompasses the carbon isotope range observed in mid-ocean-ridge-basalt (MORB) glasses and ocean-island basalts (OIB). Similarity between the isotopic compositions of carbon associated with cratonic peridotites and the carbon (as CO2) in oceanic magmas (MORB/OIB) indicates that the source of the fluids that deposited carbon, as graphite or diamond, in catonic peridotites lies within the convecting mantle, below the lithosphere. Textural observations provide evidence that some of graphite in cratonic peridotites is of sub-solidus metasomatic origin, probably deposited from a cooling C-H-O fluid phase permeating the lithosphere along fractures. Macrocrystalline graphite of primary appearance has not been found in mantle xenoliths from kimberlitic or basaltic rocks erupted away from cratonic areas. Hence, graphite in mantle-derived xenoliths appears to be restricted to Archaean cratons and occurs exclusively in low-temperature, coarse peridotites thought to be characteristic of the lithospheric mantle. The tectonic association of graphite within the mantle is very similar to that of diamond. It is unlikely that this restricted occurrence is due solely to unique conditions of oxygen fugacity in the cratonic lithospheric mantle because some peridotite xenoliths from off-craton localities are as reduced as those from within cratons. Radiogenic isotope systematics of peridotite-suite diamond inclusions suggest that diamond crystallisation was not directly related to the melting events that formed lithospheric peridotites. However, some diamond (and graphite?) crystallisation in southern Africa occurred within the time span associated with the stabilisation of the lithospheric mantle (Pearson et al. 1993). The nature of the process causing localisation of carbon in cratonic mantle roots is not yet clearly understood.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-02
    Description: Apatite has numerous applications that benefit society. The atomic arrangement of the apatite crystal structure and its rich and variable chemistry impart unique properties, which permit a wide range of technological and scientific applications in an array of disciplines outside of the traditional Earth sciences, including ecology, agronomy, biology, medicine, archeology, environmental remediation, and materials science. In our daily lives, apatite is essential for sustaining and enhancing human life through agricultural amendments, through bone replacements, through fluorescent lights, and through environmental remediation of contaminated soils. Apatite is truly a technological gem.
    Print ISSN: 1811-5209
    Electronic ISSN: 1811-5217
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-03
    Description: Carbonated strontium fluor-, hydroxyl- and chlorapatites (carbonated Sr 10 (PO 4 ) 6 X 2 = CSrApX, where X= OH, Cl and F) were synthesized in aqueous solution. The substitution mode of carbonate was determined from infrared (IR) stretching frequencies for carbonate and from the variation in unit-cell axial lengths as a function of carbonate content. The a -axis lengths of CSrApF and CSrApCl decrease, whereas the a -axis length of CSrApOH increases slightly with increasing carbonate substitution. The carbonate IR stretching region from ~1390 to 1590 cm –1 contains two doublets for both CSrApOH and CSrApCl, indicating the presence of both A- and B-type carbonate. The carbonate spectral region for CSrApF is reminiscent of that for CCaApF, which contains one doublet for B-type carbonate with a small shoulder attributable to A-type carbonate. Activity-based K sp values (assuming B-type substitution) were determined for all three series of carbonated Sr apatites and show that the solubilities of CSrApOH and CSrApCl increase at higher carbonate values, whereas those of CSrApF stay constant. The K sp values for uncarbonated SrApOH, SrApCl and SrApF were determined by extrapolation to zero percent carbonate (10 –120 , 10 –112 and 10 –113 for SrApOH, SrApCl and SrApF, respectively).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-11
    Description: Mechanisms for the incorporation of carbonate into minerals of the apatite group have been explored in both the geological and medical literature. An important problem with respect to biological apatite, which requires further clarification, is the hydroxyl content of the carbonated apatite of bone. Recent studies reveal bone apatite to contain only ~20 mol.% of the hydroxyl content of stoichiometric hydroxylapatite, with negligible chloride or fluoride. We investigated the hypothesis that the development of vacancies in the hydroxyl channel sites is a charge-balancing mechanism for the substitution of carbonate ions into hydroxylapatite. Raman spectroscopic analyses of synthetic carbonated apatites (containing 1 to 〉15 wt.% carbonate) show that their hydroxyl ion concentration correlates inversely with carbonate concentration. The specific relationship between carbonate and hydroxyl concentration in these samples closely follows the theoretical relationship defined by type-B substitution of carbonate for phosphate in the apatite structure. However, the 6–8 wt.% carbonate concentration in bone apatite falls far short of accounting for all of the hydroxyl depletion that occurs in bone apatite. Some of the additional hydroxyl depletion in bone apatite might result from substitution of Na+ for Ca2+, but further mechanism(s), perhaps (HPO4)2− substitution, must also play a significant role.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-04-02
    Description: In a recent of issue American Mineralogist , Rollin-Martinet et al. (2013 , vol. 98, p. 2037–2045) take a thermodynamic, in contrast to a medical-biological, approach to the maturation process of biological apatite. They do so by focusing on changes in the HPO 4 2– concentration in biomimetic apatite over time. In this first-of-its-kind analysis, they conclude that the increase in stability of bone mineral over time ultimately demands that bone be remodeled (i.e., replaced by new bone) in order for the mineral to retain its biologically important functional properties.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-02
    Description: Carbonate-substituted hydroxylapatite is the inorganic component in bone. The nanometer size of bone crystallites and their interweaving with subequal volumes of collagen fibrils make the chemical analysis of the bone mineral extremely difficult. The few chemical analyses that are available commonly were made on ashed bone, which, in addition to mineral, also includes chemical residues of collagen. For the present study, we chose the rostrum of the whale Mesoplodon densirostris . Its mineral content of up to 96 wt% makes it an ideal material for pursuing the chemistry of bioapatite within bone. Both bulk (X-ray fluorescence, thermogravimetry, and carbon analysis) and point analyses and element mapping (electron microprobe) were applied to this densest of bone materials. Its bioapatite has an average carbonate content of ~8 wt% and an average Ca/P atomic ratio of 1.7. The rostrum shows extremely low-concentration trace elements (Al, Si, Fe, Ti, and Sr) and some minor elements (K and Cl) as in typical bone materials. Homogeneity of elemental distribution is demonstrated in typical mineral-dominated areas within the rostrum sections except around a few vascular holes and vessels. The very good correlation between electron microprobe point analyses and the XRF bulk analyses of the rostrum indicate the latter to be a useful chemical model of bone mineral. The bulk analysis shows that the bioapatite in the rostrum has an average composition of (Ca 8.40 Mg 0.20 Na 0.54 )[(PO 4 ) 4.87 (CO 3 ) 1.13 ](OH) 0.87 .
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-19
    Description: Substitution of carbonate has long been recognized in both synthetic and natural biologically and geologically precipitated forms of hydroxylapatite. Although the predominant substitution mechanism in all of the calcium members of the apatite group formed below 100 °C is substitution of carbonate for phosphate (B-type), small amounts of A-type substitution of carbonate in the channel sites also occur. The present study focuses on the effect of cation size on the type of substitution of carbonate in members of the apatite group. The barium and lead members offer a larger channel site, which potentially could stabilize A-type substitution. A series of carbonated barium and lead fluorapatites were synthesized in aqueous solution and characterized by powder X-ray diffraction, and infrared and Raman spectroscopy. Carbonate content was determined by combustion analysis. Unit-cell parameters derived from X-ray diffraction showed that, as carbonate content increased, the a -axis length decreased and the c -axis increased slightly for carbonated barium fluorapatites (CBaApF), whereas the lengths of both the a - and c -axes increased for CPbApF. The co-occurrence of two sets of peaks in the 3 carbonate region of the infrared spectra of lead and barium carbonated apatites are strongly suggestive of both A- and B-type carbonate substitution. This interpretation is supported by Rietveld analysis of X-ray powder diffraction data, which confirms the presence of significant, but not dominant, A-type substituted carbonate ions. The variation in cell parameters as a function of carbonate substitution mode is discussed, and it is shown that B-type carbonate substitution need not be accompanied by a decrease in the a -axis in all apatites. The greater amount of A-type carbonate substitution in barium and lead fluorapatites compared to the their calcium homologs can be attributed to: (1) the less negative enthalpies of hydration of the barium and lead ions relative to that of calcium, and/or (2) the greater amount of space available for the relatively large carbonate ions in the channels defined by these large cations. Thus, the substitution modes can be controlled by either thermodynamic or kinetic considerations.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-24
    Description: Confirmation of structural H 2 O in apatites using 2 H solid state NMR spectroscopy has been followed by the determination of the number of molecules of H 2 O per unit cell (MPUC) using thermal gravimetric analysis (TGA) in 10 series of carbonated apatites [CMApX; M 10 (PO 4 ) 6 X 2 = MApX] containing the divalent cations (M) calcium, strontium, barium, and lead, and monovalent anions (X) OH – , F – , and Cl – . For many of the series, the average MPUC ranges from ca. 1.5–2.5 and is independent of the concentration (wt%) of carbonate. For other series, the average MPUC is as low as ca. 0.8 or as high as ca. 4.0. We have found for six of the series, i.e., those in which carbonate predominantly (〉90%) substitutes for phosphate that the average MPUC correlates with cation and anion atomic radii, with unit-cell axial lengths, and, especially, with our calculations of the void space available in the c -axis channels. We speculate that the volume of the channels in apatites affects the ability of H 2 O to occupy channel sites. In most low-temperature apatites of the type M 10 (PO 4 ) 6 X 2 that have been studied, carbonate prefers to substitute for phosphate (B-type substitution) rather than for monovalent anions in channel sites (A-type substitution), although computer simulations indicate that carbonate is more thermodynamically stable in the channel sites rather than the phosphate sites. In apatites with nearly total B-type carbonate substitution, there is no relationship between the number of molecules of H 2 O in the channels and the weight percent carbonate in the apatite. This lack of correlation would be expected when there is no competition within the channel between H 2 O and carbonate occupancy. In apatites with greater channel volumes, however, we infer that increased ease of carbonate incorporation in the channels also increases competition between H 2 O and carbonate. The originally incorporated amount of H 2 O is diminished to accommodate the thermodynamically favored carbonate ion substitution in the channels. We further speculate that these scenarios are most easily rationalized by incorporation of H 2 O early in the formation of nascent crystallites of apatites formed in aqueous solution, with carbonate entering the newly formed channels later and, in some cases, with difficulty.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...