ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 22 (1970), S. 20-30 
    ISSN: 1573-1987
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The Graetz problem in heat transfer is extended to the analysis of mass transfer in circular ducts for the cases where wall resistance is included and where non-Newtonian fluids that obey Casson's equation are considered. The eigenvalues and fluid bulk coefficients are presented for the fluid between the extremes of Newtonian and slug flow. It is found that for fluids which are only slightly non-Newtonian, such as blood, which is closely approximated by Casson's equation, the mass transfer rate can be predicted by Newtonian fluid analysis without appreciable error. Some experimental results give support to the theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-02-25
    Description: An inviscid analytic model is proposed for the steady separated flow around an inclined flat plate. With the plate normal to the stream, the model reduces to the wake-source model of Parkinson & Jandali originally developed for flow external to a symmetrical two-dimensional bluff body and its wake. At any other inclination, the Kutta condition is satisfied at both leading and trailing edges of the plate, and, in the limit that the angle of attack approaches zero, classical airfoil theory is recovered. A boundary condition is formulated based on some experimental results of Abernathy, but no additional empirical information is required. The predicted pressure distributions on the wetted surface for a wide range of angle attack are found to be in good agreement with experimental data, especially at smaller angles of attack. An extension to include a leading-edge separation bubble is explored and results are satisfactory.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-11-03
    Description: In a recent study by Yeung and Parkinson (1997), a wake width was proposed which allowed the bluff-body potential-flow model by Parkinson and Jandali (1970) to be extended to include the flow around an oblique flat plate. By incorporating this wake width in the momentum equation originally derived by Eppler (1954) for separated flow, the drag of the plate is related to its inclination and base pressure through a simple analytical condition. It allows the base pressure, which is usually treated as an empirical input, to be determined theoretically and thus the model becomes self-contained. Predictions of the base pressure, drag and width of wake are found to be in reasonable agreement with the experimental data. When applied to the symmetrical flow around a wedge of arbitrary vertex angle, similar agreement with experimental measurements is obtained as well. It is also demonstrated that this condition is compatible with the free-streamline models by Wu (1962) and Wu and Wang (1964) such that the corresponding predictions are in good agreement with experiment.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-06-01
    Description: An incompressible inviscid flow theory for single and two-element airfoils experiencing trailing-edge stall is presented. For the single airfoil the model requires a simple sequence of conformal transformations to map a Joukowsky airfoil, partially truncated on the upper surface, onto a circle over which the flow problem is solved. Source and doublet singularities are used to create free streamlines simulating shear layers bounding the near wake. The model's simplicity permits extension of the method to airfoil-flap configurations in which trailing-edge stall is assumed on the flap. Williams’ analytical method to calculate the potential flow about two lifting bodies is incorporated in the Joukowsky-arc wake-singularity model to allow for flow separation. The theoretical pressure distributions from these models show good agreement with wind-tunnel measurements. © 1993, Cambridge University Press
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-06-01
    Description: In an extension of an earlier potential-flow theory using conformal mapping and source singularities in the wake region to simulate two-dimensional bluff-body flow, new mapping sequences and additional boundary conditions are presented for the application of the method to lifting airfoils fitted with upper-surface spoilers or lower-surface split flaps of arbitrary size, location, and erection angle. The only empirical input is the base pressure coefficient. Calculations are presented of pressure distribution and lift for several cases of a Joukowsky airfoil fitted with a spoiler or a split flap, and these results are compared with experimental data from wind tunnel tests. Good agreement is found. © 1987, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1973-03-06
    Description: Linearized two-dimensional potential flow theory is applied to an airfoil with an upper surface spoiler. The spoiler wake is modelled as a cavity of empirically given constant pressure, and a sequence of conformal transformations maps the linearized physical plane, with a slit on the real axis representing the airfoil plus cavity, onto the upper half of the plane exterior to the unit circle. The complex acceleration potential is used, and its real part is specified on the real axis, repre- senting the cavity boundary, while its imaginary part is specified on the unit semicircle, representing the wetted surface of the airfoil and spoiler. Solutions are found for both the steady-state lift and the transient lift after spoiler actuation for airfoils of arbitrary camber, thickness and incidence, with and without a simple flap, and with spoilers of arbitrary position, height and angle. The empirical cavity pressure is arbitrary for the steady-state solution, but is assumed to have the free-stream value for the transient solutions. Comparisons are made with the results of wind-tunnel experiments, and, for the steady-state solutions, with predictions of an earlier theory. The agreement of the present theoretical predictions with the experimental results is generally good, and is in most cases somewhat better than that of the earlier theory. © 1973, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1970-02-18
    Description: A theory is presented for two-dimensional incompressible potential flow external to a symmetrical bluff body and its wake. The desired flow-separation points are made the critical points of a conformal transformation to a complex plane in which surface sources in the wake create stagnation conditions at the critical points. The stagnation streamlines then transform to tangential separation streamlines in the physical plane, with separation at the desired pressure. The position and strength of the sources are determined by the requirements of separation position and pressure coefficient. The flow inside the separation streamlines is ignored and base pressure is assumed constant at the separation value. Features of the theoretical model include a finite wake width, a pressure distribution on the separation streamlines decreasing asymptotically towards the free stream value at infinity and a simple analytic expression for the pressure distribution on the body. Comparisons of the theory with experimental data and with other theories are presented for the normal plate, the circular cylinder, the 90° wedge, and the elliptical cylinder. Although simpler to apply than the other theories, the present theory produces at least as good agreement with the experimental data. © 1970, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-10-26
    Description: Amplitude and surface pressure measurements for circular cylinder in vortex flow-excited oscillation
    Keywords: AERODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...