ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-06-08
    Description: Ice-nucleating particle (INP) measurements were performed in the boreal environment of southern Finland at the Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II) in the winter–spring of 2018. Measurements with the Portable Ice Nucleation Chamber (PINC) were conducted at 242 K and 105 % relative humidity with respect to water. The median INP number concentration [INP] during a 6-week measurement period was 13 L−1. The [INP] spanned 3 orders of magnitude and showed a general increase from mid-February until early April. No single dominant local or regional sources of INPs in the boreal environment of southern Finland could be identified. Rather, it is hypothesised that the INPs detected at SMEAR II are a result of long-range transport and dilution of INPs sourced far from the measurement site. Despite high variability, the measured [INP] values fall within the range expected for the [INP] measured elsewhere under similar thermodynamic conditions. The [INP] did not correlate with any of the examined parameters during the entire field campaign, indicating that no one single parameter can be used to predict the [INP] at the measurement location during the examined time period. The absence of a correlation across the entire field campaign also suggests that a variety of particles act as INPs at different times, although it was indirectly determined that ambient INPs are most likely within the size range of 0.1–0.5 µm in diameter on average. On shorter timescales, several particle species correlated well with the [INP]. Depending on the meteorological conditions, black carbon (BC), supermicron biological particles and sub-0.1 µm particles, most likely nanoscale biological fragments such as ice-nucleating macromolecules (INMs), correlated with the INP signal. However, an increase in the concentration of any of these particle species may not necessarily lead to the increase in the [INP]; the reasons for this remain unknown. Limitations of the instrumental set-up and the necessity for future field INP studies are addressed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2017-03-14
    Description: Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
    Electronic ISSN: 2052-4463
    Topics: Nature of Science, Research, Systems of Higher Education, Museum Science
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-21
    Description: Surface-collected dust from three different locations around the world was examined with respect to its ice nucleation activity (INA) with the ETH Portable Ice Nucleation Chamber (PINC). Ice nucleation experiments were conducted with particles of 200 and 400 nm in diameter in the temperature range of 233–243 K in both the deposition nucleation and condensation freezing regimes. Several treatments were performed in order to investigate the effect of mineralogical composition, as well as the presence of biological and proteinaceous, organic and soluble compounds on the INA of mineral and soil dust. The INA of untreated dust particles correlated well with the total feldspar and K-feldspar content, corroborating previously published results. The removal of heat-sensitive proteinaceous and organic components from the particle surface with heat decreased the INA of dusts. However, the decrease in the INA was not proportional to the amount of these organic components, indicating that different proteinaceous and organic species have different ice nucleation activities, and the exact speciation is required in order to determine why dusts respond differently to the heating process. The INA of certain dusts increased after the removal of soluble material from the particle surface, demonstrating the low INA of the soluble compounds and/or the exposition of the underlying active sites. Similar to the proteinaceous organic compounds, soluble compounds seem to have different effects on the INA of surface-collected dusts, and a general conclusion about how the presence of soluble material on the particle surface affects its INA is not possible. The investigation of the heated and washed dusts revealed that mineralogy alone is not able to fully explain the observed INA of surface-collected dusts at the examined temperature and relative humidity conditions. The results showed that it is not possible to predict the INA of surface-collected soil dust based on the presence and amount of certain minerals or any particular class of compounds, such as soluble or proteinaceous/organic compounds. Instead, at temperatures of 238–243 K the INA of the untreated, surface-collected soil dust in the condensation freezing mode can be roughly approximated by one of the existing surrogates for atmospheric mineral dust, such as illite NX. Uncertainties associated with mechanical damage and possible changes to the mineralogy during treatments, as well as with the BET surface area and its immediate impact on the number of active sites (ns,BET), are addressed.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-10
    Description: Ice nucleating particle (INP) measurements were performed in the boreal environment of southern Finland at the Station for Measuring Ecosystem-Atmosphere Relations SMEAR II in the winter-spring of 2018. Measurements with the Portable Ice Nucleation Chamber (PINC) were conducted at 242 K and 105 % relative humidity with respect to water. The median INP number concentration [INP] during a six-week measurement period was found to be 13 L−1. [INP] spanned 3 orders of magnitude and showed a general increase from mid-February until early April. No persistent local or regional sources of INPs in the boreal environment of southern Finland could be identified. Rather, it is hypothesised that the INPs at SMEAR II are a result of dilution during long-range transport. Despite high variability, the measured [INP] values fall within the range expected for INP number concentrations measured elsewhere at similar thermodynamic conditions. [INP] did not correlate with any of the examined relevant parameters during the entire field campaign, indicating that no one single parameter can be used to predict the INP number concentration at the measurement location during the examined time period. The absence of correlation across the entire field campaign also suggests that a variety of particles are acting as INPs at different times, although it was indirectly determined that, on average, ambient INPs are most likely in the size range of 0.1–0.5 μm in diameter. On shorter time scales, several particle species correlated well with [INP] implying their potential role as INPs. Depending on the meteorological conditions, signatures of black carbon (BC), supermicron biological particles and sub-0.1 μm particles, most likely nanoscale biological fragments such as ice nucleating macromolecules (INMs), have been found in the INP signal. However, an increase in the concentration of any of these particle species may not necessarily lead to the increase in [INP], reasons for which remain unknown. Limitations of the instrumental setup and the necessity of the future field INP studies are addressed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2017-08-31
    Description: Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Numerous observations of CCN number concentration exist, and many closure studies have been performed to predict CCN number concentrations based on particle number size distributions, chemical composition, and the κ-Köhler theory. Most of these studies provide details for short time periods or focus on special environmental conditions. These observations, however, cannot address questions of large-scale temporal and spatial CCN variability. Here we analyze long-term observations of CCN number concentrations, particle number size distributions and chemical composition from twelve sites on three continents. Eight of these stations are part of the European Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS). We group the observatories into categories according to their official classification: coastal background (Barrow, Alaska; Mace Head, Ireland; Finokalia, Crete; Noto Peninsula, Japan), rural background (Melpitz, Germany; Cabauw, the Netherlands; Vavihill, Sweden), alpine sites (Puy de Dôme, France; Jungfraujoch, Switzerland), remote forest sites (ATTO, Brazil; SMEAR, Finland) and the urban environment (Seoul, South Korea). Expectedly, CCN characteristics are highly variable across regions. However, they also vary within categories, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behavior, most continental stations exhibit very similar relative activation ratios across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the activation ratios spread more widely across the SS spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g., at Barrow (Arctic Haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season), or Finokalia (forest fire influence in fall). The rural background and urban sites exhibit relatively little variability throughout the year while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles, was highest at the coastal site of Mace Head (0.6) and the lowest at the rain forest station ATTO (0.2–0.3). We performed closure studies to predict CCN number concentrations from the particle number size distribution and chemical composition measurements. The prediction accuracy for the average concentrations is high. The ratio between predicted and measured CCN concentrations is between 0.87 and 1.4. The temporal variability is also well represented, as reflected by Pearson correlation coefficients 〉 0.87. We also conducted a series of sensitivity studies for the ratio of predicted versus measured CCN concentration, where we varied the hygroscopicity parameter κ, and made simple assumptions for aerosol particle number concentrations and size distributions. Uncertain particle number concentrations and their size distributions significantly impair the accuracy in predicting temporal variability and hence of absolute concentrations, while the effect of uncertain κ values is limited to the predicted CCN number concentration. Information on CCN number concentrations at many locations is important to better characterize ACI and their radiative forcing. Long-term comprehensive aerosol particle characterizations are labor intensive and costly. For observatories where such efforts are out of scope to obtain nevertheless long-term information of CCN number concentrations, we recommend conducting collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can be calculated based on continued particle number size distribution information only. This approach is a good alternative to deriving kappa from time-resolved chemical composition measurements which are costly and may still not cover the appropriate size range. Additionally, given the variability in observations at sites of the same category, a certain density in spatial coverage of observations is needed, especially along coastlines. We recommend operating "migrating-CCNCs" at priority locations, identified by model evaluation, around the globe where long-term particle number size distribution data are already available.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-29
    Description: Surface-collected dust from three different locations around the world was examined with respect to its ice nucleation activity (INA) with the Portable Ice Nucleation Chamber (PINC). Ice nucleation experiments were conducted with particles of 200 and 400nm in diameter in the temperature range of 233–243K in both deposition nucleation and condensation freezing regimes. Several treatments were performed in order to investigate the effect of mineralogical composition, as well as the presence of biological and proteinaceous, organic and soluble compounds on the INA of mineral and soil dust. The INA of untreated dust particles correlated well with the total feldspar and K-feldspar content, corroborating previously published results. The removal of heat-sensitive proteinaceous and organic components from the particle surface with heat decreased the INA of dusts. However, the decrease in the INA was not proportional to the amount of these organic components, indicating that different proteinaceous and organic species have different ice nucleation activities, and the exact speciation is required in order to determine why dusts respond differently to the heating process. The INA of certain dusts increased after the removal of soluble material from the particle surface, demonstrating the low INA of the soluble compounds and/or the exposition of the underlying active sites. Similar to the proteinaceous organic compounds, soluble compounds seem to have different effects on the INA of surface-collected dusts, and a general conclusion about how the presence of soluble material on the particle surface affects its INA is not possible. The investigation of the heated and washed dusts revealed that mineralogy alone is not able to fully explain the observed INA of surface-collected dusts at the examined temperature and relative humidity conditions. The results showed that it is not possible to predict the INA of surface-collected soil dust based on the presence and amount of certain minerals or any particular class of compounds, such as soluble or proteinaceous/organic. Instead, at temperatures of 238–243K the ice nucleation activity of the untreated, surface-collected soil dust in condensation freezing mode can be roughly approximated by one of the existing surrogates for atmospheric mineral dust, such as illite NX. Uncertainties associated with mechanical damage and possible changes to the mineralogy during treatments, as well as with the BET surface area and its immediate impact on the number of active sites ns,BET parameterisation, are addressed.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...