ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-02-01
    Print ISSN: 0376-0421
    Electronic ISSN: 1873-1724
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-04-01
    Print ISSN: 0376-0421
    Electronic ISSN: 1873-1724
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-01-01
    Print ISSN: 0376-0421
    Electronic ISSN: 1873-1724
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-05-10
    Description: The physical reasons for the difficulty in predicting accurately strong swept-shock-wave/turbulent-boundary-layer interactions are investigated. A well-documented sharp-fin/plate flow has been selected as the main test case for analysis. The selected flow is calculated by applying a version of the Baldwin-Lomax turbulence model, which is known to provide reliable results in flows characterized by the appearance of crossflow vortices. After the validation of the results, by comparison with appropriate experimental data, the test case flow is studied by means of stream surfaces which start at the inflow plane, within the undisturbed boundary layer, and which are initially parallel to the plate. Each of these surfaces has been represented by a number of streamlines. Calculation of the spatial evolution of some selected stream surfaces revealed that the inner layers of the undisturbed boundary layer, which are composed of turbulent air, wind around the core of the vortex. However, the outer layers, which are composed of low-turbulence air, fold over the vortex and at the reattachment region penetrate into the separation bubble forming a low-turbulence tongue, which lies along the plate, underneath the vortex. The conical vortex at its initial stage of development is completely composed of turbulent air, but gradually, as it grows linearly in the flow direction, the low-turbulence tongue is formed. Also the tongue grows in the flow direction and penetrates further into the separation region. When it reaches the expansion region inboard of the primary vortex, the secondary vortex starts to be formed at its tip. Examination of additional test cases indicated that the turbulence level of the elongated tongue decreases if the interaction strength increases. The existence of the low-turbulence tongue in strong swept-shock-wave/turbulent-boundary-layer interactions creates a mixed-type separation bubble: turbulent in the region of the separation line and almost laminar between the secondary vortex and the reattachment line. This type of separation cannot be simulated accurately with the currently used algebraic turbulence models, because the basic relations of these models are based on the physics of two-dimensional flows, whereas in a separation bubble the whole recirculation region is turbulent. For improving the accuracy of the existing algebraic turbulence models in predicting swept-shock-wave/turbulent-boundary-layer interactions, it is necessary to develop new equations for the calculation of the eddy viscosity in the separation region, which will consider the mixed-flow character of the conical vortex.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1992-03-01
    Description: The supersonic flow past a fin mounted on a flat plate is simulated numerically by solving the Reynolds averaged Navier—Stokes equations. The results agree well with the experimental data. Post-processing of the numerical solution provides the missing flow-field evidence for confirming the currently accepted flow model, whose conception was based mainly on surface data. It is found that the flow is dominated by a large vortical structure, which lies on the plate and whose core has a remarkably conical shape with flattened elliptical cross-section. Along the fin and close to the corner, a slowly growing smaller vortex develops. On top of the conical vortex and along it a λ-shock is formed. Quantitative data are presented, which show that the flow is not actually purely conical but a small deviation exists, especially at the part between the separation shock and the plate. This deviation is detected when the stream wise extent of the flow is more than 20–30 initial boundary-layer thicknesses. Owing to the rather quasi-conical nature of the flow, the various flow variables do not remain constant along rays that start at the origin of the conical flow field, but they vary slowly. Data are presented which support the view that this deviation from conical behaviour is mainly due to the effect of the smaller rate of development of the boundary later of the plate, compared to the conical vortex.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1985-05-01
    Description: A central role in the mechanism of the self-sustained oscillations of the flow about cavity-type bodies is played by the reattachment edge. Experimentally it has been found that periodic pressure pulses generated on this edge are fed back to the origin of the shear layer and cause the production of discrete vortices. The oscillations have been found to be suppressed or attenuated when the edge has the shape of a ramp of small angle, or when it is properly rounded. To clarify the role of the shape of the reattachment edge in the mechanism of the oscillations, a mathematical model is developed for the vortex-edge interaction. In this model the interaction of one discrete vortex, imbedded within a constant-speed parallel flow, with the reattachment edge is studied. Two typical shapes of the reattachment edge are examined; a ramp of variable angle and an ellipse. The main conclusion of the present analysis is the strong dependence of the pressure pulses, that are induced on the surface of the edge, on the specific shape of the edge. The pressure pulses on reattachment edges with shapes that give rise to steady flows have been found to be of insignificant amplitude. On the other hand, when the reattachment edge has a shape that is known to result in oscillating flow, the induced pressure pulses are of very large amplitude. Intermediate values of the pressure are found for configurations known to stabilize partially the flow. The present results indicate that, for the establishment of the oscillation, the feedback force generated by the vortex-edge interaction must have an appropriate value. The feedback force may be eliminated if the shape of the lip of the edge is properly designed. © 1985, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-06-01
    Print ISSN: 0021-9991
    Electronic ISSN: 1090-2716
    Topics: Computer Science , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: The impingement of a row of finite-area vortices on an edge is presently used to efficiently simulate the shear layer/edge interaction, yielding support for the hypothesis that the pressure waves emitted from an impingement edge are generated by the vortices/edge interaction. A parametric application of this method shows that pressure wave amplitude is a function of the length of the succession of vortices and that frequency of their release; this amplitude decreases with decreasing vortex spacing while succession length remains constant, or when succession length decreases while the number of vortices remains constant.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 28; 1557-156
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: A modeling of the vortex-airfoil interaction is presented in which the finite-area of the real vortices is taken into consideration. Two vortex models are used. In the first, a disturbed piece of vorticity layer is simulated by four rows of discrete vortices of small strength. In the second, a number of discrete vortices is arranged within a circle. The first model may simulate a shear layer or a wake, while the second, a well-formed vortex. The method was applied to the calculation of the pressure induced on the surface of the airfoil by the interacting vortex. Both models give similar results. It was found that for large distances of the vortex from the surface of the airfoil, the consideration or not of the finite-area of the vortex is not a significant factor in determining the induced pressure field. However, when the distance of the vortex from the surface is reduced, its shape is distorted and the induced pressure pulses have lower amplitude than the ones induced by an equivalent point vortex. In the limit, where the vortex impinges on the leading edge of the airfoil, it is split into two and the time dependent pressure coefficient takes even negative values at some time intervals.
    Keywords: AERODYNAMICS
    Type: AIAA Journal (ISSN 0001-1452); 25; 5-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-19
    Description: The spatial distribution of the numerical disturbances that are generated during the numerical solution of a flow is examined. It is shown that the distribution of the disturbances is not uniform. In regions where the structure of a flow is simple, the magnitudes of the generated disturbances is small and their decay is fast. However, in complex flow regions, as in separation and vortical areas, large magnitude disturbances appear and their decay may be very slow. The observed nonuniformity of the numerical disturbances makes possible the reduction of the calculation time by application of what may be called the partial-grid calculation technique, in which a major part of the calculation procedure is applied in selective subregions, where the velocity disturbances are large, and not within the whole grid. This technique is expected to prove beneficial in large-scale calculations such as the flow about complete aircraft configurations at high angle of attack. Also, it has been shown that if the Navier-Stokes equations are written in a generalized coordinate system, then in regions in which the grid is fine, such as near solid boundaries, the norms become infinitesimally small, because in these regions the Jacobian has very large values. Thus, the norms, unless they are unscaled by the Jacobians, reflect only the changes that happen at the outer boundaries of the computation domain, where the value of the Jacobian approaches unity, and not in the whole flow field.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Computational Physics (ISSN 0021-9991); 82; 429-453
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...