ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-05-09
    Description: Understanding of plant-pathogen coevolution in natural systems continues to develop as new theories at the population and species level are increasingly informed by studies unraveling the molecular basis of interactions between individual plants and their pathogens. The next challenge lies in further integration of these approaches to develop a comprehensive picture of how life history traits of both players interact with the environment to shape evolutionary trajectories.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689373/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689373/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burdon, Jeremy J -- Thrall, Peter H -- R01 GM074265-01A2/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 May 8;324(5928):755-6. doi: 10.1126/science.1171663.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commonwealth Scientific and Industrial Research Organization (CSIRO)-Plant Industry, Post Office Box 1600, Canberra, ACT 2601, Australia. Jeremy.Burdon@csiro.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19423818" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Ecosystem ; Fungal Proteins/genetics/metabolism ; Fungi/genetics/*pathogenicity/physiology ; *Host-Pathogen Interactions ; Immunity, Innate ; Plant Diseases/immunology/*microbiology ; Plant Proteins/genetics/metabolism ; Plants/genetics/immunology/metabolism/*microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-03-15
    Description: In a wild plant-pathogen system, host resistance and pathogen virulence varied markedly among local populations. Broadly virulent pathogens occurred more frequently in highly resistant host populations, whereas avirulent pathogens dominated susceptible populations. Experimental inoculations indicated a negative trade-off between spore production and virulence. The nonrandom spatial distribution of pathogens, maintained through time despite high pathogen mobility, implies that selection favors virulent strains of Melampsora lini in resistant Linum marginale populations and avirulent strains in susceptible populations. These results are consistent with gene-for-gene models of host-pathogen coevolution that require trade-offs to prevent pathogen virulence increasing until host resistance becomes selectively neutral.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thrall, Peter H -- Burdon, Jeremy J -- New York, N.Y. -- Science. 2003 Mar 14;299(5613):1735-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Commonwealth Scientific and Industrial Research Organization (CSIRO)-Plant Industry, Centre for Plant Biodiversity Research, General Post Office Box 1600, Canberra, ACT 2601, Australia. Peter.Thrall@csiro.au〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12637745" target="_blank"〉PubMed〈/a〉
    Keywords: Basidiomycota/genetics/*pathogenicity/physiology ; *Biological Evolution ; Flax/genetics/*microbiology/physiology ; Genes, Fungal ; Genes, Plant ; *Genetic Variation ; Models, Genetic ; Plant Diseases/*microbiology ; Selection, Genetic ; Spores, Fungal ; Virulence/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-02-13
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-11-22
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1989-12-01
    Print ISSN: 0022-0477
    Electronic ISSN: 1365-2745
    Topics: Biology
    Published by Wiley on behalf of British Ecological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant pathology 52 (2003), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The Linum marginale–Melampsora lini plant–pathogen interaction has been studied extensively with regard to its epidemiology and population genetic structure (host resistance and pathogen virulence) in a natural metapopulation. In this study, this system was used in an experimental metapopulation approach to investigate explicitly how the distance (degree of isolation) between local population patches influences disease dynamics within a growing season, as well as the genetic structure of pathogen populations through stochastic colonization and extinction processes. The experimental design centred on four replicate sets of populations, within which patches were spaced at increasingly greater distances apart. Each patch consisted of an identical set of host and pathogen genotypes, with each pathogen genotype having the ability to attack only one of four host-resistance types. Over the 2 years of the experiment, the results showed clear ‘boom-and-bust’ epidemic patterns, with the strongest determinant of disease dynamics within a growing season being the identity of particular host–pathogen genotypic combinations. However, there were also significant effects of spatial structure, in that more isolated patches tended to exhibit lower levels of disease during epidemic peaks than patches that were close together. Extinction of pathogen genotypes from individual populations was positively related to the severity of disease during preceding epidemic peaks, but negatively related to the level of disease present at the final census prior to overwintering. The probability of recolonization of pathotypes into populations during the second growing season was most strongly related to the distance to the nearest neighbouring source population in which a given pathotype was present. Overall, these results highlight the importance of spatial scale in influencing the numerical and genetical dynamics of pathogen populations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Variation in aggressiveness and its consequences for disease epidemiology were studied in the Cakile maritima–Alternaria brassicicola host–pathogen association. Variability in pathogen growth rates and spore production in vitro, as well as disease severity and lesion growth rate on C. maritima in glasshouse inoculation trials, were investigated. Substantial variation was found in growth rates among individual A. brassicicola isolates, as well as among pathogen populations. A significant trade-off also existed between growth and spore production, such that faster-growing isolates produced fewer spores per unit area. While there was little evidence for a link between growth in vitro and either disease severity or lesion development among fast- vs slow-growth isolate classes at the individual isolate level, the results suggest that variation in pathogen fitness components associated with aggressiveness may influence disease dynamics in nature. An analysis using an independent data set of disease prevalence in the associated host populations found a significant positive relationship between the average growth rate of pathogen populations in vitro and disease progress over the growing season in wild host populations. Trade-offs such as those demonstrated between growth rate and spore production may contribute to the maintenance of variation in quantitatively based host–pathogen interactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant pathology 51 (2002), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The concept of gene-for-gene coevolution is a major model for research on disease resistance in crop plants. However, few theoretical or empirical studies have examined such systems in natural situations, and as a consequence, there is little knowledge of how spatial effects are likely to influence the evolution of host resistance and pathogen virulence in gene-for-gene interactions. In this work, a simulation approach was used to investigate the epidemiological and genetic consequences of varying host and pathogen dispersal in metapopulation situations. The results demonstrate clear impacts of dispersal distance on the total number of host and pathogen genotypes that are maintained, as well as on genetic variation at individual host resistance and pathogen virulence loci. Several other important results also emerged from this study. In contrast to the predictions of many earlier nonspatial models, so-called ‘super-races’ of pathogens do not always evolve and dominate, indicating that it is not necessary to assume costs of resistance or virulence to maintain high levels of polymorphism in biologically realistic situations. The rate of evolution of both resistance and virulence depend on the scale of dispersal, with greater mixing (as a function of dispersal scale) resulting in a faster approach to a dynamic endpoint. The model in this paper also predicts that, despite the greater total genotypic diversity of pathogens across the metapopulation, variation in host resistance will generally be greater than variation in pathogen virulence within local populations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant pathology 49 (2000), S. 0 
    ISSN: 1365-3059
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Existing theory suggests that increasing the diversity of resistance and virulence types in host–pathogen interactions will result in qualitative shifts in spatial and temporal dynamics, and greater among-population asynchrony in disease dynamics and prevalence. Here, data are presented from a biologically realistic metapopulation model of gene-for-gene interactions that indicate that population level variation in resistance diversity will be negatively associated with disease prevalence (fraction of individuals infected). The model also predicts that disease incidence (presence/absence) will be positively related to total resistance diversity across the metapopulation, because high resistance diversity also selects for more virulent pathogens. These results are then contrasted with empirical data from a natural host–pathogen system. While the argument that high resistance diversity should generally lead to lower disease levels has been applied extensively in agricultural situations, the connection between genetic diversity, resistance and disease dynamics has never been demonstrated in natural systems. Here, through analysis of multiyear data on disease prevalence in the context of knowledge of resistance variation among host populations in a natural plant host–pathogen metapopulation, the first evidence is provided that observed levels of asynchrony in disease dynamics may indeed be related to resistance structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...